Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T07:51:51.664Z Has data issue: false hasContentIssue false

Stellar Magnetism and starspots: the implications for exoplanets

Published online by Cambridge University Press:  07 August 2014

Conrad Vilela*
Affiliation:
Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG
John Southworth
Affiliation:
Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG
Carlos del Burgo
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla, Mexico
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar variability induced by starspots can hamper the detection of exoplanets and bias planet property estimations. These features can also be used to study star-planet interactions as well as inferring properties from the underlying stellar dynamo. However, typical techniques, such as ZDI, are not possible for most host-stars. We present a robust method based on spot modelling to map the surface of active star allowing us to statistically study the effects and interactions of stellar magnetism with transiting exoplanets. The method is applied to the active Kepler-9 star where we find small evidence for a possible interaction between planet and stellar magnetosphere which leads to a 2:1 resonance between spot rotation and orbital period.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Berdyugina, S. V. 2005, Liv. Rev. Solar Phys., 2, 8Google Scholar
Donati, J. F. & Semel, M. 1990, Solar Phys., 128, 227Google Scholar
Phan-Bao, N., Lim, J., et al. 2009, ApJ, 704, 1721Google Scholar
Wilson, O. C. 1978, ApJ, 226, 379Google Scholar
Noyes, R. W., Hartmann, L. W., et al. 1984, ApJ, 279, 763CrossRefGoogle Scholar
Czesla, S., Huber, K. F., Wolter, U., Schröter, S., & Schmitt, J. H. M. M. 2009, A&A, 505, 1277Google Scholar
Oshagh, M., Santos, N. C., Boisse, I., et al. 2013, A&A, 556, A19Google Scholar
Kipping, D. 2012 MNRAS, 427, 2487Google Scholar
Sanchis-Ojeda, R. & Winn, J. N. 2011, ApJ, 743, 61Google Scholar
Brown, D. J. A., Collier Cameron, A., et al. 2011, MNRAS, 415, 605CrossRefGoogle Scholar
Laine, R. O., Lin, D. N. C., & Dong, S. 2008, ApJ, 685, 521Google Scholar
Lanza, A. F., Bonomo, A. S., & Rodonò, M. 2007, A&A, 464, 741Google Scholar
Croll, B., Walker, G. A. H., et al. 2006, ApJ, 648, 607CrossRefGoogle Scholar
Reegen, P. 2007, A&A, 467, 1353Google Scholar
Feroz, F., Hobson, M. P., Cameron, E., & Pettitt, A. N. 2013, arXiv1306.2144Google Scholar
Holman, M. J., Fabrycky, D. C., et al. 2010, Science, 330, 51Google Scholar
Jeffreys, H. 1961, The Theory of Probability, Clarendon Press, Oxoford, 3rd editionGoogle Scholar