Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T22:44:59.061Z Has data issue: false hasContentIssue false

Photospheric magnetic field of an eroded-by-solar-wind coronal mass ejection

Published online by Cambridge University Press:  12 September 2017

J. Palacios
Affiliation:
Departamento de Física y Matemáticas, Universidad de Alcalá University Campus, Sciences Building, P.O. 28871, Alcalá de Henares, Spain email: [email protected]
C. Cid
Affiliation:
Departamento de Física y Matemáticas, Universidad de Alcalá University Campus, Sciences Building, P.O. 28871, Alcalá de Henares, Spain email: [email protected]
E. Saiz
Affiliation:
Departamento de Física y Matemáticas, Universidad de Alcalá University Campus, Sciences Building, P.O. 28871, Alcalá de Henares, Spain email: [email protected]
A. Guerrero
Affiliation:
Departamento de Física y Matemáticas, Universidad de Alcalá University Campus, Sciences Building, P.O. 28871, Alcalá de Henares, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bartels, J. 1932, Terrestrial Magnetism and Atmospheric Electricity, 37 (1), 152.Google Scholar
Cid, C., Palacios, J., Saiz, E., & Guerrero, A. 2016, ApJ, 828, 11.CrossRefGoogle Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., & Luoni, M. L. 2006, A&A, 455, 349.Google Scholar
Halain, J.-P., Berghmans, D., Seaton, D. B., et al. 2013, Solar Phys., 286, 67.Google Scholar
Kataoka, R., Shiota, D., Kilpua, E., & Keika, K. 2015, GRL, 42, 5155.Google Scholar
Krista, L. & Gallagher, P., 2009, Solar Phys., 256, 87.CrossRefGoogle Scholar
Lavraud, B., Ruffenach, A., Rouillard, A. P., et al. 2014, JGR, 119, 26.Google Scholar
Lugaz, N., Downs, C., Shibata, K., et al. 2011, ApJ, 738, 127.CrossRefGoogle Scholar
Lugaz, N., Farrugia, C. J., Davies, J. A., et al. 2012, ApJ, 759, 68.Google Scholar
McComas, D. J., Gosling, J. T., Winterhalter, D., & Smith, E. J. 1988, JGR, 93, 2519.Google Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C., 2012, Solar Phys., 275, 3.CrossRefGoogle Scholar
Ruffenach, A., Lavraud, B., Farrugia, C. J., et al. 2015, JGR, 120, 43.Google Scholar
Russell, C. T., and McPherron, R. L. 1973, JGR, 78, 92.CrossRefGoogle Scholar
Scherrer, P. H., Schou, J., Bush, R. I., et al., 2012, Solar Phys., 275, 207.CrossRefGoogle Scholar