Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T10:16:48.081Z Has data issue: false hasContentIssue false

Origin of Star-to-Star Abundance Inhomogeneities in Star Clusters

Published online by Cambridge University Press:  01 June 2008

Jan Palouš
Affiliation:
Astronomical Institute, Academy of Sciences of the Czech Republic, Boční 1401, 140 31 Prague 4, Czech Republic email: [email protected]
Richard Wünsch
Affiliation:
Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, United Kingdom email: [email protected]
Guillermo Tenorio-Tagle
Affiliation:
Instituto Nacional de Astrofí sica Optica y Electronica, AP 51, 72000 Puebla, México email: [email protected], [email protected]
Sergyi Silich
Affiliation:
Instituto Nacional de Astrofí sica Optica y Electronica, AP 51, 72000 Puebla, México email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mass reinserted by young stars of an emerging massive compact cluster shows a bimodal hydrodynamic behaviour. In the inner part of the cluster, it is thermally unstable, while in its outer parts it forms an out-blowing wind. The chemical homogeneity/inhomogeneity of low/high mass clusters demonstrates the relevance of this solution to the presence of single/multiple stellar populations. We show the consequences that the thermal instability of the reinserted mass has to the galactic super-winds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Chevalier, R. A. & Clegg, A. W. 1985, Nature, 317, 44CrossRefGoogle Scholar
De Silva, G. M., Sneden, C., Paulson, D. B., Asplund, M., & Bland-Hawthorn, J. 2006, AJ, 131, 455CrossRefGoogle Scholar
De Silva, G. M., Freeman, K. C., Asplund, M., Bland-Hawthorn, J., Bessesl, M. S., & Collet, R. 2007, AJ, 133, 1161CrossRefGoogle Scholar
De Silva, G. M., Freeman, K, Bland-Hawthorn, J., & Asplund, M. 2008, in Andersen, J., Bland-Hawthorn, J. & Nordstöm, B. (eds.), The Galaxy Disk in Cosmological Context, Proc. IAU Symposium No. 254 (CUP), this volumeGoogle Scholar
Decresssin, T., Charbonnel, C., & Meynet, G. 2007, A&A, 475, 859Google Scholar
Gilbert, A. M. & Graham, J. R.. 2007, ApJ, 668, 168CrossRefGoogle Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., Gonzáles-Delgado, R. M., Robert, C., Foo Kune, D., De Mello, D. F., Devost, D., & Heckman, T. M. 1999, ApJS, 123, 3CrossRefGoogle Scholar
Melioli, C. & de Gouveia Dal Pino, E. M. 2004, A&A, 424, 817Google Scholar
Meynet, G. 2008, in Andersen, J., Bland-Hawthorn, J. & Nordstöm, B. (eds.), The Galaxy Disk in Cosmological Context, Proc. IAU Symposium No. 254 (CUP), this volumeGoogle Scholar
Piotto, G. 2008, MemSAI, 79, 3Google Scholar
Tenorio-Tagle, G., Wünsch, R., Silich, S., & Palouš, J. 2007, ApJ, 658, 1196CrossRefGoogle Scholar
Wünsch, R., Silich, S., Palouš, J., & Tenorio-Tagle, G. 2007, A&A, 471, 579Google Scholar
Wünsch, R., Tenorio-Tagle, G., Palouš, J., & Silich, S. 2008, ApJ, 684, September 1, arXiv:0805.1380v1Google Scholar