Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:40:43.517Z Has data issue: false hasContentIssue false

Orbital resolved spectroscopy of GX 301–2: wind diagnostics

Published online by Cambridge University Press:  30 December 2019

Nazma Islam*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

GX 301–2, a bright high-mass X-ray binary with an orbital period of 41.5 days, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases. In Islam & Paul (2014), we presented results from an orbital resolved spectroscopic study of GX 301–2 using data from MAXI Gas Slit Camera. We have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.1–0.3 after the periastron passage indicates the presence of high density accretion stream. We aim to further investigate the characteristics of the accretion stream with an AstroSat observation of the system.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Agrawal, P. C. 2006, Advances in Space Research, 38, 2989 10.1016/j.asr.2006.03.038CrossRefGoogle Scholar
Inoue, H. 1985, SSRv, 40, 317 Google Scholar
Islam, N., & Paul, B. 2014, MNRAS, 441, 2539 10.1093/mnras/stu756CrossRefGoogle Scholar
Kallman, T. R., Palmeri, P., Bautista, M. A., Mendoza, C., & Krolik, J. H. 2004, ApJS, 155, 675 10.1086/424039CrossRefGoogle Scholar
Kaper, L., van der Meer, A., & Najarro, F. 2006, A&A, 457, 595 Google Scholar
Koh, D. T., Bildsten, L., Chakrabarty, D., et al. 1997, ApJ, 479, 933 10.1086/303929CrossRefGoogle Scholar
Leahy, D. A., & Kostka, M. 2008, MNRAS, 384, 747 10.1111/j.1365-2966.2007.12754.xCrossRefGoogle Scholar
Matsuoka, M., Kawasaki, K., Ueno, S., et al. 2009, PASJ, 61, 999 10.1093/pasj/61.5.999CrossRefGoogle Scholar
Mihara, T., Nakajima, M., Sugizaki, M., et al. 2011, PASJ, 63, S623 10.1093/pasj/63.sp3.S623CrossRefGoogle Scholar
Pravdo, S. H., & Ghosh, P. 2001, ApJ, 554, 383 10.1086/321350CrossRefGoogle Scholar
Singh, K. P., Tandon, S. N., Agrawal, P. C., et al. 2014, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91441SGoogle Scholar