Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T15:39:41.715Z Has data issue: false hasContentIssue false

Orbital determination and dynamics of resonant extrasolar planetary systems

Published online by Cambridge University Press:  01 October 2007

C. Beaugé
Affiliation:
Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, (X5000BGR) Córdoba, Argentina
S. Ferraz-Mello
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, USP, Rua do Matão 1226, 05508-900 São Paulo, Brasil
T. A. Michtchenko
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, USP, Rua do Matão 1226, 05508-900 São Paulo, Brasil
C. A. Giuppone
Affiliation:
Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, (X5000BGR) Córdoba, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this communication we review some properties and applications of mean-motion resonances in extrasolar planetary systems, with particular emphasis on the 2/1 commensurability. A first part is devoted to the dynamical structure of the 2/1 resonance, including (but not restricted to) the so-called apsidal corotations. In a second part we discuss the orbital evolution of resonant systems under the effects of non-conservative forces. Special attention is given to the use of apsidal corotations as markers of largescale orbital decay, possibly due to disk-planet interactions in primordial times. Finally, we analyze the interplay between dynamical analysis and orbital fitting. Using the HD82943 planetary system as an example, we discuss: (i) up to what point present orbital fits allow us to distinguish between different resonant configurations, and (ii) in what ways may the dynamical structure of resonances be used as a complementary part of the orbital fitting process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Beaugé, C. & Michtchenko, T. A. 2003, MNRAS, 341, 760.CrossRefGoogle Scholar
Beaugé, C., Ferraz-Mello, S., & Michtchenko, T. A. 2003, ApJ, 593, 1124.CrossRefGoogle Scholar
Beaugé, C., Michtchenko, T. A., & Ferraz-Mello, S. 2006, MNRAS, 365, 1160.CrossRefGoogle Scholar
Beaugé, C., Sándor, Zs., Érdi, B., & Süli, À. 2007, AA, 463, 359.CrossRefGoogle Scholar
Beaugé, C., Giuppone, C. A., Ferraz-Mello, S., & Michtchenko, T.A. 2008, MNRAS, submitted.Google Scholar
Ferraz-Mello, S., Beaugé, C., & Michtchenko, T. A. 2003, CeMDA, 87, 99.CrossRefGoogle Scholar
Ferraz-Mello, S., Michtchenko, T. A., & Beaugé, C. 2005a, ApJ, 621, 473.CrossRefGoogle Scholar
Ferraz-Mello, S., Michtchenko, T. A., Beaugé, C., & Callegari, N. Jr., 2005, Lect. Notes Phys., 683, 219.CrossRefGoogle Scholar
Fischer, D. A., Marcy, G. W., Butler, R. P., Vogt, S. S., Laughlin, G., Henry, G. W., Abouav, D., Peek, K. M.G., Wright, J. T., Johnson, J. A., McCarthy, C., & Isaacson, H. 2007, submitted.Google Scholar
Ford, E. B., Lystad, V., & Rasio, F. A. 2005, Nature, 434, 873.CrossRefGoogle Scholar
Goldreich, P. 1965, MNRAS 130, 159.CrossRefGoogle Scholar
Goldreich, P. & Sari, R. 2003, ApJ, 585, 1024.CrossRefGoogle Scholar
Goździewski, K. & Konacki, M. 2006, ApJ, 647, 473.CrossRefGoogle Scholar
Ji, J., Liu, L., Kinoshita, H., Zhou, J., Nakai, H., & Li, G. 2003, ApJ, 591, L57.CrossRefGoogle Scholar
Kley, W., Lee, M. H., Murray, N., & Peale, S. J. 2005, AA, 437, 727.CrossRefGoogle Scholar
Laughlin, G. & Chambers, J. E. 2001, ApJ, 551, L109.CrossRefGoogle Scholar
Laughlin, G., Butler, R. P., Fischer, D. A., Marcy, G. W., Vogt, S. S., & Wolf, A. S. 2005, ApJ, 622, 1182.CrossRefGoogle Scholar
Lee, M. H. & Peale, S. J. 2002, ApJ, 567, 596.CrossRefGoogle Scholar
Lee, M. H. 2004, ApJ, 611, 517.CrossRefGoogle Scholar
Lee, M. H., Butler, R. P., Fischer, D. A., Marcy, G. W., & Vogt, S. S. 2006, ApJ, 641, 1178.CrossRefGoogle Scholar
Mayor, M., Udry, S., Naef, D., Pepe, F., Queloz, D., Santos, N. C., & Burnet, M. 2004, AA, 415, 391.CrossRefGoogle Scholar
Michtchenko, T. A. & Ferraz-Mello, S. 2001, AJ, 122, 474.CrossRefGoogle Scholar
Michtchenko, T. A. & Malhotra, R. 2004, Icarus, 168, 237.CrossRefGoogle Scholar
Michtchenko, T. A., Beaugé, C., & Ferraz-Mello, S. 2006, CeMDA, 94, 411.CrossRefGoogle Scholar
Michtchenko, T. A., Beaugé, C., & Ferraz-Mello, S. 2008, in preparation.Google Scholar
Murray, C. D. & Dermott, S. F. 1999, Solar System Dynamics, Cambridge University Press.Google Scholar
Namouni, F. & Zhou, J. L. 2006, CeMDA, 95, 245.CrossRefGoogle Scholar
Roy, A. E. & Ovenden, M. W. 1954, MNRAS, 115, 296.CrossRefGoogle Scholar
Sándor, Z., Kley, W., & Klagyivik, P. 2007, AA, 472, 981.CrossRefGoogle Scholar
Ward, W. R. 1997, ApJ, 482, L211.CrossRefGoogle Scholar
Zhou, L.-Y, Ferraz-Mello, S., & Sun, Y.-S. 2008, in: Sun, Y.-S., Ferraz-Mello, S., & Zhou, J.-L., (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou, China), p. 485.Google Scholar