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Abstract. In this communication we review some properties and applications of mean-motion
resonances in extrasolar planetary systems, with particular emphasis on the 2/1 commensura-
bility. A first part is devoted to the dynamical structure of the 2/1 resonance, including (but not
restricted to) the so-called apsidal corotations. In a second part we discuss the orbital evolution
of resonant systems under the effects of non-conservative forces. Special attention is given to
the use of apsidal corotations as markers of largescale orbital decay, possibly due to disk-planet
interactions in primordial times. Finally, we analyze the interplay between dynamical analysis
and orbital fitting. Using the HD82943 planetary system as an example, we discuss: (i) up to
what point present orbital fits allow us to distinguish between different resonant configurations,
and (ii) in what ways may the dynamical structure of resonances be used as a complementary
part of the orbital fitting process.
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1. Introduction
A mean-motion resonance (MMR) occurs when the ratio of their orbital periods lies

close to the ratio of two small integers. We can write this condition in a generic form as

n1

n2
� (p + q)

p
, (1.1)

where ni are the mean motions (orbital frequencies) of the planets and p, q are integers.
Following general usage, we identify the planet with smaller semimajor axis by the index
1, while 2 is reserved for its outer companion (i.e. a1 < a2). In the planar case, the dy-
namics of a resonant system is characterized by the evolution of two critical (or resonant)
angular variables, defined as

θi = (p + q)λ2 − pλ1 − q�i (i = 1, 2), (1.2)

where λi are the mean longitudes and �i the longitudes of pericenter. The value of q
defines the order of the resonance.

If at least one of the critical angles is found to be librating, then the system is said
to be inside the mean-motion resonance. For the present work, we define libration as the
case in which the angle does not take all values between zero and 2π, but oscillates with
a certain amplitude around an equilibrium value θi0 . We will not analyze whether this
libration is dynamical (i.e. associated to a separatrix crossing) or merely kinematical,
but concentrate solely on the observed behavior of the variable under question. If neither
angular variable librates, the system is said to be outside the resonance, or in a non-
resonant configuration.
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Definition (1.2) implies that θ1 − θ2 = q(�2 − �1) = q∆�, with ∆� the difference
in the longitudes of the pericenter. This a a purely secular (non-resonant) angle and
its behavior defines the secular evolution of the system. Analogous to a MMR, if ∆�
librates, the system is said to be in an apsidal alignment. Usually this behavior is referred
to as a secular resonance, although Michtchenko and Malhotra (2004) showed that true
secular resonance -dynamical libration- only occur for very high eccentricities (typically
of the order of 0.7). Thus, for most cases the apsidal alignment is a purely kinematical
phenomenon, and no separatrix divides the librational and circulatory regions.

Since rational numbers form a dense set in the real axis, equation (1.1) does not ap-
pear to be a very strict condition. At least in principle, any two planets (with arbitrary
semimajor axes) could be said to be resonant, provided the values of p, q are chosen suffi-
ciently large. However, it can be shown (e.g. Murray and Dermott 1999) that, unless the
values of p, q are small integers, the magnitude of the resonant terms in the perturbation
are smaller than the short period contributions, and the corresponding resonance is not
effective in dominating the dynamics of the system. Thus, only small order resonances
are important: 2/1, 3/2, 3/1, 5/3, etc. Of these, the strongest is the 2/1, corresponding
to the smallest integers (p = q = 1).

Since the important resonances only occupy a very limited region in the domain of
semimajor axis, it is not expected that planetary systems should be largely associated
to MMR. However, this does not appear to be the case. Among the 26 presently known
multiple-planetary systems, 13 contain planets in nearby orbits in which their mutual
perturbations are significant. Of these, probably 8 are in the immediate vicinity of mean-
motion resonances. Of course, many of them have been detected only recently, and their
orbits are still not well determined. Consequently, it is not certain whether all seemingly
resonant configurations are real. Nevertheless, the proportion of resonant systems is still
very significant.

Among the different resonant systems, most of them seem to be associated to the 2/1
MMR. These are GJ876, HD82943, HD73526, HD128311 and HD160691. Two planets
in 55Cnc are believed to lie within the 3/1 MMR, although the most recent orbital fit
by Fischer et al. (2007) seems to place these planets outside MMR. Other examples
could also exist in higher-order commensurabilities, such as HD202206 and HD12661 in
the 5/1. However, these resonances are very weak, and the statement of their resonant
motion is more related to stability criteria than to observational evidence. Even so, it
appears that approximately 8/13 (≈ 61%) of the presently known planetary systems in
nearby orbits contain bodies associated to MMR. Even if some are questionable and are
later removed from the list, the percentage is still very significant, indicating that the
frequency of resonant systems among extrasolar planets is much larger than expected
from a random distribution of orbits.

In our own Solar System, a similar picture occurs in satellite systems of the outer plan-
ets, where many of the regular moons display resonant motion. Probably the best known
example are the three inner Galilean satellites of Jupiter (Io, Europa and Ganymedes).
Not only are these bodies locked in two successive 2/1 MMR, as the orbital config-
uration of all three lie in the so-called Laplace resonance where the resonant angle
θL = λE − 3λG + 2λI librates around zero with an amplitude of less than one tenth
of a degree. As far back as fifty years ago (e.g. Roy and Ovenden 1954) it was known
that the frequency of resonances in the satellite systems is much higher than expected.
It was later shown that these configurations could be explained by orbital evolution due
to tidal effects (Goldreich 1965). These resonances are not primordial, but a consequence
of resonance trapping due to an exterior non-conservative force.

In the past years, resonance capture has also been proposed for extrasolar planets,
although in this case the driving mechanism is not tidal friction but interactions between
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the planets and planetesimals or gaseous disks. However, a good scenario must not only
explain the presence of planets in resonance, but also the specific resonant configurations
in which they presently lie. For that sake, we must understand the structure of the
phase space associated to planetary mean-motion resonances, identify possible regions of
motion for planetary bodies, and analyze which solutions are compatible with planetary
migration.

2. Dynamics of Planetary Mean-Motion Resonances
In the vicinity of a MMR, limiting ourselves to coplanar orbits, the gravitational po-

tential of the interaction between both planets (the so-called disturbing function) can be
written in a generic form as

R =
∑

j1 ,j2 ,j3

Aj1 ,j2 ,j3 (a1 , a2 , e1 , e2) cos (j1Q + j2θ1 + j3∆�) (2.1)

(e.g. Beaugé and Michtchenko 2003) where the index ji can take any integer value,
Aj1 ,j2 ,j3 are coefficients that depend on the semimajor axes and eccentricities, and Q =
λ1 − λ2 is the synodic angle. Perturbation terms with j1 = j2 = 0 are usually called
secular terms. Terms that only depend on θ1 and ∆� (i.e. j1 = 0) are called reso-
nant perturbations, while those that contain Q in their arguments are usually known as
short-period terms. If the resonance relation is dominant, short-period contributions have
smaller amplitudes (i.e. small Aj1 ,j2 ,j3 ) and their effects cancel out over longer timescales.
Thus, if we are interested in the long-term dynamics of the system, we can eliminate the
gravitational interactions associated to the angle Q and reduce the disturbing function to
resonant and secular terms only. This averaging of R can be carried either by analytical
(e.g. Beaugé and Michtchenko 2003) or semi-analytical methods (e.g. Michtchenko et al.
2006).

The averaged resonant planetary problem (planar case) then depends only on two
independent angles θ1 and ∆�, and constitutes a two degrees-of-freedom dynamical
system. If the orbital elements are not astrocentric, but calculated with Jacobi or Poincaré
canonical variables, then the problem contains three integrals of motion, given, up to
second order in the masses, by:

F = G
m0m1

2a1
+ G

m0m2

2a2
− 1

2π

∫ 2π

0
RdQ

L = m1n1a
2
1

√
1 − e2

1 + m2n2a
2
2

√
1 − e2

2 (2.2)

K = (p + q)m1n1a
2
1 + pm2n2a

2
2

where F is the Hamiltonian (total orbital energy), L is the total angular momentum and
K is sometimes referred to as the spacing parameter (see Michtchenko and Ferraz-Mello
2001, Michtchenko et al. 2008). Given any initial condition in the immediate vicinity of
the MMR, its orbital evolution will be such that all three functions remain constant for
all time. It is important to emphasize that expressions (2.2) are not integrals of motion
if the orbital elements are astrocentric.

Equilibrium solutions constitute a particular, but very important, type of configura-
tions. They are given by the conditions

da1

dt
=

da2

dt
=

de1

dt
=

de2

dt
=

dθ1

dt
=

d∆�

dt
= 0 (2.3)

and correspond to periodic orbits in the unaveraged system. If the solution is stable,
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Figure 1. Families of stable zero-amplitude ACR for the 2/1 MMR, in the plane of the ec-
centricities, and for three different mass ratios m2/m1 = 0.5, 1, 5. (π, π)-ACR (dotted lines)
exist only above the collision curve, shown as a dashed diagonal line. Other ACRs are shown in
continuous curves.

initial conditions in its vicinity will display oscillations around the stationary point. In
particular, both the resonant angle θ1 and the secular angle ∆� will librate around fixed
values. Such behavior corresponds to a simultaneous capture into a mean-motion and
a secular resonance; we have called such solutions Apsidal Corotation Resonances, or
ACR for short (Ferraz-Mello et al. 2005b). Among the numerous families of ACR (See
Michtchenko et al. 2006 for a catalog of ACR for several MMR), the most important are
those associated to global maxima of the Hamiltonian function F . From (2.2) and (2.3) it
can be seen that maxima of F correspond to minima of the disturbing function R. In other
words, these ACR are configurations where the gravitational interactions between the
planets are minima, and are thus preferential stable configurations for resonant planets.
In the case of high-eccentricity planetary systems, where physical encounters are possible
and most orbital configurations invariably lead to unstable motion, ACR is an effective
mechanism that protects planets from close approaches and allow the system to survive.

The protective role of ACR makes these solutions natural nesting places for moderate-
to-high eccentricity planetary systems, and it is not surprising that many (if not all)
resonant planets have stable orbital fits consistent with ACR. Perhaps the most well-
known example is GJ876 (e.g. Laughling and Chambers 2001, Lee and Peale 2002),
where both outer planets are locked in an ACR inside the 2/1 MMR, displaying small
amplitude librations around θ1 = ∆� = 0. We refer to such a solution as a (0, 0)-ACR,
where the numbers in the brackets mark the equilibrium value of θ1 and ∆�, respectively.
HD82943 is another example. Up to 2003, the two planets of this system were believed
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to be locked in a (π, π)-ACR (oscillations around θ1 = ∆� = π), although later updates
in the masses and orbital elements placed the system in an unstable orbit around a
(0, 0)-ACR. Finally, until recently the orbital fit of the planets 55Cnc-c and 55Cnc-d
was consistent with an ACR in the 3/1 MMR, where both θ1 and ∆� librate around
values different from 0 or π. We call this solution an asymmetric-ACR (Beaugé et al.
2003, Ferraz-Mello et al. 2003). With the discovery of the fifth planet in 55Cnc (Fischer
et al. 2007), the new orbital solution puts the planets outside the 3/1 commensurability.
However, as we will discuss in next section, orbital fits for multi-planetary systems are
very imprecise and often show solutions with different dynamical behavior within the 1-σ
level of confidence of the best fit. Thus, it is perhaps too early to discard the resonant
relation for this system, at least until further observations confirm the more recent fits.

In Beaugé et al. (2003) we showed that, at least in a first approximation, the location
of the ACR depends on the planetary masses and semimajor axes only through the ratios
m2/m1 and a1/a2 . This permits a global study of ACR, constructing maps or catalogs
of these stationary solutions that will be valid for any planetary system. Figure 1 plots
the most important families of stable ACR for the 2/1 MMR in the eccentricities plane,
and for three mass ratios (values shown near each curve). Except for (π, π)-ACR that
only exist above the collision curve, all the other solutions form continuous families (one
per mass ratio) that include quasi-circular orbits. Asymmetric solutions only exist for
m2/m1 � 1.015 (Ferraz-Mello et al. 2003, Lee 2004); for larger mass ratios only symmetric
configurations are found.

Notwithstanding their importance, ACR only give limited information on the resonant
structure. To obtain a more complete picture and identify other possible configurations,
the analysis must be extended beyond the stationary solutions. A study in this direction
is presented in Michtchenko et al. (2008). Although the reader is referred to that paper
for a more detailed analysis, here we reproduce some of the results.

Figure 2 shows four dynamical maps of the 2/1 MMR, considering a mass ratio slightly
larger than unity. Each map was constructed from the analysis of a grid of initial con-
ditions centered around a given ACR. The gray scale shows the spectral number SN
(Michtchenko and Ferraz-Mello 2001) resulting from a Fourier analysis of the eccentric-
ity of the inner planet, obtained from a numerical integration over more than 105 orbital
periods. White strips mark the presence of stable periodic orbits of the averaged problem,
while darker tones indicate increasingly chaotic motion. Zones of forbidden motion are
shaded in red, and the red circle in each frame is the stable ACR.

As can be seen in the two top plots, the region accessible to the planets is divided
into two zones, separated by a chaotic layer. The inner zone, around the ACR, is the
region of resonant motion while, outside, the orbits are non-resonant (i.e. secular). This
latter region is dominated by the two modes of secular motion (called Modes I and II),
corresponding to apsidal alignments around ∆� = 0 and ∆� = π, respectively. Inside
the resonant region there are two main families of periodic orbits, whose intersection
coincides with the ACR. The vertical branch is associated to a fixed value of θ1 and large
amplitude variation of ∆�. In the horizontal branch the opposite occurs: ∆� is fixed
while θ1 suffers large amplitude oscillations. As can be seen in the plot for e1 = 0.1, other
white strips representing additional families of periodic orbits are also present. These are
related to secondary resonances where the frequency of libration of θ1 is commensurable
with the circulatory frequency of ∆�.

In the frame for e1 = 0.2 the chaotic layer defining the boundaries of the resonant
region has grown significantly, pushing the secular regime practically outside the limits
of the graph. The strong chaotic zone implies that the secular and resonant regions are
virtually isolated, making any transition difficult. In particular, it helps to explain why
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Figure 2. Dynamical maps of the 2/1 MMR for m2/m1 = 1.064 around four diffrent symmetric
ACR. Each is identified by the eccentricity of the inner planet. Each plot shows the spectral
number resulting for a numerical simulation for 130000 orbital periods. Initial conditions were
chosen with equal values of the angular momentum integral L and scale parameter K. In each
frame, stable ACR is identified by a red circle, periodic orbits by white strips, and chaotic
motion by increasingly dark tones of gray. The red dotted region corresponds to forbidden initial
conditions. The indicated colors refer to the electronic version of the paper. Figure reproduced
from Michtchenko et al. (2008).

resonance trapping has a lower probability for initial eccentric orbits. Finally, for e1 = 0.4
the only region with stable motion is associated to resonant motion, and all secular orbits
are chaotic with very short lifetimes. For e1 larger than some limiting value between 0.2
and 0.4, the only stable orbits possible for planetary systems in the near vicinity of the
2/1 MMR are resonant, and correspond to oscillations around the ACR. An example,
the red crosses in the lower right-hand frame correspond to initial conditions equal to the
orbital fit of the HD82943 planets by Mayor et al. (2004), whose dynamical instability
appears very clearly from its location at the edge of the resonant region. Conversely,
the light blue crosses correspond to the initial conditions given by the stable Fit B

https://doi.org/10.1017/S1743921308016943 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308016943


Orbital determination and dynamics of resonant systems 433

(Ferraz-Mello et al. 2005a) for the same system. This solution is located much closer to
the zero-amplitude ACR, and corresponds to a stable ACR with moderate amplitude.

Figure 2 shows a very complex structure for the 2/1 MMR, even restricted to the
planar case. Especially for lower eccentricities, several different modes of stable motion
are present which, in principle, could represent possible configurations for real planetary
systems. Curiously, the phase space becomes simpler for growing eccentricities, until all
possible stable motion becomes dominated by the central ACR.

3. Planetary Migration and Resonance Capture
Extrasolar planets usually have smaller semimajor axes and higher eccentricities than

expected from classical cosmogonic theories. Either these planets formed by a mechanism
different from the one that gave birth to our Solar System, or the exoplanets suffered sig-
nificant orbital evolution after their formation. This latter proposal is sometimes known
as the Hypothesis of Planetary Migration. Although several migration scenarios have been
proposed, such as planetary scattering or interactions with a remnant planetesimal disk,
the most probable process is a byproduct of the interactions between the planets and
its surrounding gaseous disk. This interaction causes an exchange of energy and angular
momentum between both components (gas and solid bodies) leading to an infall of the
orbital distance of the planets (e.g. Ward 1997).

Even though the orbital evolution of the semimajor axis of the planet under planet-
disk interactions is well established, there is still ongoing discussion as to the evolution
of the orbital eccentricity. Depending on the relative strength of the Lindblad and coro-
tational resonances with the disk (Goldreich and Sari 2003), the eccentricity can either
increase or decrease as the planet falls towards the star. This is a fundamental issue
in the hypothesis of planetary migration. On one hand, the existence of solitary giant
planets with large eccentricities points towards an eccentricity pumping scenario. On the
other hand, largescale orbital decay of resonant planets requires a damping of the same
orbital element (Lee and Peale 2002, Beaugé et al. 2006). Of course planetary systems
with only one known mass could hide additional bodies, and the observed eccentricities
could have been excited by other means, such as planetary scattering (e.g. Ford et al.
2005) or perhaps even jet acceleration of the host star (Namouni and Zhou 2006).

Although planetary migration has several unsolved problems, it is probably our best
explanation for the current orbital characteristics of exoplanets. However, in order to
consider it more than just an interesting hypothesis, we require some evidence that it
really occurred. Multiple-planet systems in mean-motion resonances are specially suited
for this task. Not only may they serve as evidence of such a past migration, but what
type of resonant solution they inhabit at present may also give us valuable information
about details of the orbital decay itself.

Figure 3 shows the result of a numerical simulation of the orbital evolution of two
fictitious planets (m1 = 1MJ up and m2 = 0.5MJ up) initially placed in circular orbits
with a1 = 5.4 AU and a2 = 9.5 AU. Planetary migration was modeled with a Stokes-
type dissipative force (Beaugé et al. 2006) which affected only the outer body. The drag
coefficients were chosen such that a2 decayed with an e-folding time of τa = 106 years, but
did not cause any secular change in the eccentricity (i.e. τe = ∞). Initially only the outer
body suffers an orbital decay, while the semimajor axis of the inner planet is practically
constant. However, once resonance capture occurs in the 2/1 MMR (t ∼ 105 years), the
ratio of mean motions becomes locked. Since the dissipative force is still acting on m2 ,
the outer planet still falls, but now with a slower rate since it must push the inner body
with it. Although both planets still evolve towards smaller orbits, the resonance relation
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Figure 3. Numerical simulation of planetary migration leading to a capture of two planets
(m2/m1 = 0.5) in the 2/1 MMR. Notice the switch from symmetric to asymmetric ACR at
t ≈ 2 × 105 years, and back to symmetric at t ≈ 1.2 × 106 years. In the lower right-hand frame,
arrows show the direction of orbital variation.

is maintained. As soon as the resonance lock is achieved, the eccentricities begin to grow
and the angular variables acquire small oscillations around equilibrium values.

From this point onwards, all orbital evolution occurs within the resonant region of the
2/1 MMR. The lower right-hand frame of Figure 3 shows the relationship between e2
and e1 as the bodies evolve inside the commensurability. A comparison with Figure 1
shows that the system follows closely the family of stable ACR for this mass ratio. In
other words, the families of ACR that were shown in Section 2 not only give the different
equilibrium solutions as function of the angular momentum L, but also correspond to
evolutionary tracks within the resonance. Thus, catalogs of ACR such as the one depicted
in Figure 1 may not only show us the present location of resonant planetary systems,
but also how they evolved (see also Zhou et al. 2008).

As long as the migration is sufficiently slow (adiabatic limit), the evolution of the
system within the resonance will not depend on the particular values of τa and τe , but
only on the ratio

K =
τa

τe
(3.1)

(see Lee and Peale 2002). In the particular case of Figure 3, the drag parameters were
chosen such that K = 0. Of course different values of τa will imply faster or slower
orbital decay, but the only effect in the plots will be a modification of the timescale.
In particular, the evolutionary track in the (e1 , e2) plane will suffer no change. The
adiabatic limit depends on the planetary masses as well as on the resonance (Beaugé
et al. 2006). Typically, the smaller the mass ratio, the slower must the migration be to
guarantee adiabaticity. If this condition is not satisfied, resonance lock may still occur,
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Figure 4. Simulations of planetary migration and capture in the 2/1 MMR for fictitious planets
with mass ratios similar to the GJ876 resonant planets. The plot shows the evolutionary curves
of the eccentricities as function of the decreasing semimajor axes (arrow indicates direction of
evolution). Each line corresponds to a different simulation with varied value of K . Note that for
K � 10 the eccentricities reach equilibrium values.

but the orbital evolution within the commensurability will follow a different path from
the families of ACR and, typically, with a much larger amplitude of libration.

The simulation shown in Figure 3 continues until the eccentricity of the inner planet
reaches values close to unity and the system is disrupted. This occurs when the semimajor
axes are still well above 1 AU. However, a different result is obtained if the migration
model includes a significant damping in the eccentricity (i.e. finite values of τe and K > 0).
Figure 4 shows the results of a series of simulations with m2/m1 = 3.15, similar to the
latest edge-on fit for the resonant planets of GJ876 (Laughlin et al. 2005). The plot shows
the evolution of the eccentricities as a function of the decaying semimajor axes. Thus, in
the graph the system evolves from right to left. Initial conditions were the same as in the
previous figure; curves starting at a = 9.5 AU correspond to the outer planet, while the
other branches mark the orbit of the inner body. Each line presents an integration with
different value of K. For K = 0 (no eccentricity damping) the eccentricity of the inner
planet is quickly excited, reaching almost parabolic orbits after an infall of less than 2
AU. Larger values of K imply smaller eccentricities at a given semimajor axis until, for
K � 10, the eccentricities reach an equilibrium value that is constant with respect to the
semimajor axis. Note that for K = 4000 there appears to be a transient interval where
e1 decreases before reaching a plateau.

The existence of these equilibrium eccentricities alllow the system to suffer large scale
migrations while maintaining orbital stability. More importantly, if the planets were ini-
tially formed far from the star and captured from quasi-circular orbits, there is only one
value of K compatible with the present configuration. In this way, the present eccen-
tricities of the resonant planets could yield information about the characteristics of the
gaseous nebula at the final stages of planetary formation. However, this is not an easy
task. For example, the current eccentricities of the GJ876 resonant planets seem to in-
dicate that the migration followed a value of K ∼ 40, while hydrodynamical simulations
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usually give values of K close to unity (Kley et al. 2005). This discrepancy could be
evidence in favor of an inner disk in the system (Sandor et al. 2007) or a timely dispersal
of the nebula before the eccentricities were excited beyond their present values. A similar
study was undertaken for the HD72536 system by Sandor et al. (2007), where the authors
discuss the ejection of a hypothetical third planet to account for the large amplitude of
libration around the stable ACR.

4. Orbital Determination of Resonant Planets
Orbital determination of exoplanets from radial velocity data is a complex process,

especially in the case of systems with two planets in mean-motion resonances. The orbital
commensurability can give origin to a noticeable periodicity in the radial velocity curve,
complicating the separation of both components from the signal. Moreover, two of the
most important orbital elements for dynamical studies, the eccentricities e and longitudes
of pericenter � are also the most difficult to estimate, since they are given by asymmetries
in the quasi-periodic signal. Then, if the individual signals of two planets are mutually
affected by their resonant configuration, the precision of the estimation of both e and �
can be seriously impaired.

The question then is whether our current knowledge of the planetary parameters are
sufficiently reliable to perform detailed dynamical studies, particularly those in which
precise values of the orbits are required to reconstruct characteristics of the migration
process. Some resonant systems appear well constrained, for example GJ876. Although
the orbital elements (in particular the eccentricities) have changed somewhat in the
last few years due to an increasing observational database, the overall dynamics of the
resonant planets has remained almost invariant. All orbital fits are consistent with a low-
amplitude (0, 0)-ACR. Other resonant systems offer a more complex scenario. A good
example of an ill-defined system is HD82943. At present there are two known planets
in this system, with orbits consistent with a 2/1 MMR. Both were discovered by the
Geneva group (see Ji et al. 2003 for an initial orbital solution), and at present the total
number of observations is N = 165. Of these, 142 were obtained from CORALIE (Mayor
et al. 2004), while the remaining 23 come from Keck (Lee et al. 2006). The orbital fits
calculated with the complete data set show significant differences with respect to the
solution with CORALIE data alone, although in both cases the best fits lead to unstable
configurations (Ferraz-Mello et al. 2005a, Lee et al. 2006).

Since it is expected that the real planets should lie in stable regions of the phase
space, both Ferraz-Mello et al. (2005a) and Lee et al. (2006) searched for nearby stable
orbits with similar weighted r.m.s of the residuals (wrms). All solutions were found to be
consistent with resonant motion, usually corresponding to a large-amplitude (0, 0)-type
ACR, although some individual solutions with a circulation of ∆� were also found. More
recently, Goździewski and Konacki (2006) showed that two planets in stable co-orbital
motion and non-coplanar orbits could yield similar radial velocity curves, albeit with
significantly larger residuals. However, the existence of co-orbital giant planets is far from
being established, and there is evidence that planetary bodies with masses larger than
∼ 0.7M⊕ could not be accreted in the equilateral Lagrange points of giant exoplanets
(Beaugé et al. 2007). Even so, it is very curious how co-orbital bodies can mimic the
radial velocity curve of two bodies in a 2/1 MMR.

Dynamically unstable best fits for resonant planetary systems are not uncommon (e.g.
HD73526, HD128311, HD202206), and do not seem very surprising considering the exis-
tence of large regions of chaotic motion surrounding the stable resonant regions. However,
independent of the dynamical stability, we are also interested in the statistical stability
of the orbital solution. In other words, how far can we trust a given best fit, even if
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Figure 5. Variation of the parameters of the best multi-Keplerian fit for partial sets of observa-
tions, as functions of the times corresponding to the last observation in the set. Data corresponds
to complete CORALIE-Keck set.

it leads to stable motion? One possible way is to study the variations of the best fits
as function of the number of observations (Beaugé et al. 2008). If the current solution
is robust, then we should expect only small and smooth changes in the parameters as
a function of the data set number. More importantly, we can then expect that future
incorporation of additional observations will not significantly change our knowledge of
the system.

Results for multi-Keplerian fits of HD82943 are shown in Figure 5. The lower left-
hand frame shows the change in wrms and

√
χ2 . Notice the increase in the value of

wrms, particularly over the last few tens of observations. Thus, more data points does
not necessarily imply better orbital fits. The lower right-hand plot shows the number
of data points as a function of time. The “times” corresponding to the three published
orbital fits are identified by horizontal broken lines. With this we can identify in each of
the other frames the values of the parameters for each time interval.

Perhaps the most important conclusion from this figure is an apparent non-convergence
of the parameters towards defined values. Thus, there is no confidence that future obser-
vations will not change the masses and orbital elements of the planets once again, and
the current orbital fit of the HD82943 planets does not seem to be reliable. For instance,
the passage from N = 164 to N = 165 causes very drastic changes in some elements,
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Figure 6. Level curves of constant wrms for four multi-Keplerian orbital fits considering fixed
values of (k2 , h2 ) = (e2 cos ω2 , e2 sin ω2 ) in a regular grid. Each plot was drawn using a different
number of data points N , simulating the information available at the moment of the publication
of each orbital solution. Global minimum is identified with large bullet. Broad level curves
represent the 1-σ confidence level.

although practically no change in the wrms of the fit (see lower-left hand frame). This
seems to imply that both solutions, although very different, are equally consistent with
the observational data.

The degree of the statistical instability in the orbital fits is so noticeable that the
removal of a single observation can lead to completely different values in some of the
orbital parameters. To analyze this sensitivity more globally, we performed a series of
multi-Keplerian orbital fits over a grid in the variables (k2 , h2) = (e2 cos ω2 , e2 sinω2).
For each point the numerical values of these parameters were fixed, and the fit was done
only on the remaining parameters. These were allowed to vary with no restriction, and
the resulting wrms corresponds to the best fit for those values of (k2 , h2). We then plotted
level curves of wrms in this grid, which give information on the shape and relative depth
of that fitness function in the plane.

This procedure was applied to four sets of observations, corresponding to N = 120,
N = 142, N = 164 and N = 165. Results are shown in Figure 6. In each case, the global
minimum wrmsmin is identified by a large bullet. Although close to the minimum the level
curves are approximately elliptical, distorsions appear for larger values, indicating that
confidence levels obtained from analysis of the correlation matrix are not valid beyond the
immediate vicinity of wrmsmin . The broad level curve in each frame is the 1-σ confidence
level (see Beaugé et al. 2008).

For N = 164 the figure shows two local minima with almost the same wrms. The global
minimum is located in ω ∼ 140 degrees, while the other solution (ω ∼ 270 degrees) lies
near the global minimum obtained for N = 165. Thus, not only is the fitness function
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very shallow around the best-fit solution, but sometimes two local minimums can be
observed, and very small changes in the data set can lead to one (or the other) being
identified as the best fit. Although the individual best fits do change a lot, the shape
and extension of the 1-σ confidence region appears more robust. Even so, many different
types of dynamical configurations coexist within these regions. Thus, although at present
it is not possible to choose between them, it seems possible that the HD82943 system
lies somewhere inside this region.

A possible origin for this sensitivity to the data set is that HD82943 contains an
additional planet. This hypothesis was initially proposed by Goździewski and Konacki
(2006) and more recently by Beaugé et al. (2008). The periodograms of the residuals
after a two-planet fit and the level of wrms seem to indicate that an additional planet
with an orbital period of approximately 900 days could be present.

5. Conclusions
Studies of mean-motion resonances (MMR) in exoplanets are far from being purely

academic. Several known planetary systems (e.g. GJ876, HD82943, HD73526, HD128311)
are believed to lie deep inside the 2/1 MMR, and other systems may inhabit other
commensurabilities, such as the planets 55Cnc-b and 55Cnc-c in the 3/1 or the HD202206
system in the 5/1 MMR. Consequently, a detailed knowledge of the structure of each
resonance can yield important insights towards understanding possible locations of real
extrasolar bodies.

The large proportion of resonance relations seems to be related to two distinct charac-
teristics. First, MMR are natural nesting places of planets undergoing convergent migra-
tion, for example, due to disk-planet interactions. Second, resonances act as a protective
mechanism, generating configurations of stable motion in regions of the phase space dom-
inated by instability and close encounters. Thus, MMR constitute privileged locations
where exoplanets could be found with large eccentricities and nearby orbits.

However, the dynamical evolution of resonant systems in very sensitive to the initial
conditions, and even small uncertainties in orbital fits (as obtained from radial velocity
data) may lead to large uncertainties in the evolution of a given multi-planet system.
Although some resonant systems are well known (such as GJ876) and their dynamics
well mapped, others are less certain. Possibly the most volatile example is HD82943,
where even the substraction of a single RV data point can yield completely different
orbital solutions and dynamics.

Compared to dynamical studies of our Solar System, where masses and initial condi-
tions are well known, extrasolar planetary systems constitute completely different prob-
lems, requiring new methods and approaches. In some ways, resonant exoplanetary sys-
tems can be treated as dynamical systems whose initial conditions are not masses or
orbital elements, but radial velocity data. It is therefore not surprising that dynamical
studies of these systems have become increasingly tied to the process of orbital determi-
nation.
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Beaugé, C., Michtchenko, T. A., & Ferraz-Mello, S. 2006, MNRAS, 365, 1160.
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Beaugé, C., Giuppone, C. A., Ferraz-Mello, S., & Michtchenko, T.A. 2008, MNRAS, submitted.
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