Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T05:32:58.709Z Has data issue: false hasContentIssue false

Modern view of the warm ionized medium

Published online by Cambridge University Press:  05 March 2015

A. Hill
Affiliation:
CSIRO Astronomy & Space Science, Epping, NSW, Australia
R. Reynolds
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, USA
L. Haffner
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, USA
K. Wood
Affiliation:
School of Physics and Astronomy, University of St Andrews, Scotland
G. Madsen
Affiliation:
Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the observational evidence that the warm ionized medium (WIM) is a major and physically distinct component of the Galactic interstellar medium. Although up to ~ 20% of the faint, high-latitude Hα emission in the Milky Way may be scattered light emitted in midplane Hii regions, recent scattered light models do not effectively challenge the well-established properties of the WIM.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Ferguson, A. M. N., Wyse, R. F. G., & Gallagher, J. S. 1996, AJ 112, 2567Google Scholar
Guélin, M. 1974, in IAUS 60, 51Google Scholar
Haffner, L. M., Reynolds, R. J., & Tufte, S. L. 1999, ApJ 523, 223Google Scholar
Haffner, L. M., Dettmar, R.-J., Beckman, J. E., et al. 2009, Rev. Mod. Phys. 81, 969CrossRefGoogle Scholar
Hoopes, C. G. & Walterbos, R. A. M. 2003, ApJ 586, 902Google Scholar
Howk, J. C. & Consiglio, S. M. 2012, ApJ 759, 97Google Scholar
Hoyle, F. & Ellis, G. R. A. 1963, Australian Journal of Physics 16, 1CrossRefGoogle Scholar
Madsen, G. J., Reynolds, R. J., & Haffner, L. M. 2006, ApJ 652, 401Google Scholar
Mierkiewicz, E. J., Reynolds, R. J., Roesler, F. L., Harlander, J. M., & Jaehnig, K. P. 2006, ApJ (Letters) 650, L63Google Scholar
Rand, R. J., Kulkarni, S. R., & Hester, J. J. 1990, ApJ (Letters) 352, L1Google Scholar
Reynolds, R. J., Hausen, N. R., Tufte, S. L., & Haffner, L. M. 1998, ApJ (Letters) 494, L99Google Scholar
Reynolds, R. J., Roesler, F. L., & Scherb, F. 1973, ApJ 179, 651CrossRefGoogle Scholar
Reynolds, R. J., Sterling, N. C., Haffner, L. M., & Tufte, S. L. 2001, ApJ (Letters) 548, L221Google Scholar
Seon, K.-I. I. & Witt, A. N. 2012, ApJ 758, 109CrossRefGoogle Scholar
Witt, A. N., Gold, B., Barnes, F. S., et al. 2010, ApJ, 724, 1551CrossRefGoogle Scholar
Wood, K., Hill, A. S., Joung, M. R., et al. 2010, ApJ 721, 1397CrossRefGoogle Scholar
Wood, K. & Reynolds, R. J. 1999, ApJ 525, 799Google Scholar