Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T18:58:39.959Z Has data issue: false hasContentIssue false

Maser science with the next generation Very Large Array (ngVLA)

Published online by Cambridge University Press:  07 February 2024

Todd R. Hunter*
Affiliation:
National Radio Astronomy Observatory, Charlottesville, VA 22903, USA. Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Imaging the bright maser emission produced by the various molecular species from 1.6 to 116 GHz provides a way to probe the kinematics of dense molecular gas at high angular resolution. Unimpeded by the high dust optical depths that affect shorter wavelength (sub)mm observations, the high brightness temperature of these emission lines have become an essential tool for understanding the process of massive star formation. Operating from 1.2–116 GHz, the next generation Very Large Array (ngVLA) of 263 antennas will provide the capabilities needed to fully exploit these powerful tracers, including the ability to resolve accretion and outflow motions down to scales as fine as ∼1-10 au in deeply embedded Galactic star-forming regions, and at sub-pc scales in nearby galaxies. I will summarize the proposed specifications of the ngVLA, describe the current status of the project, and offer examples of future experiments designed to image the vicinity of massive protostars in continuum, thermal lines, and maser lines simultaneously.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Araya, E. et al. 2010, ApJ, 717, 133 10.1088/2041-8205/717/2/L133CrossRefGoogle Scholar
Argon, A. L., Reid, M. J., & Menten, K. M. 2003, ApJ, 593, 925 10.1086/376592CrossRefGoogle Scholar
Avison, A., Quinn, L. J., Fuller, G. A., et al. 2016, MNRAS, 461, 136 10.1093/mnras/stw1101CrossRefGoogle Scholar
Bartkiewicz, A., Sanna, A., Szymczak, M., et al. 2020, A&A, 637, A15 Google Scholar
Bartkiewicz, A., Szymczak, M., van Langevelde, H. J., Richards, A. M. S., & Pihlström, Y. M. 2009, A&A, 502, 155 Google Scholar
Baudry, A., Walmsley, C. M., Winnberg, A., & Wilson, T. L. 1981, A&A, 102, 287 Google Scholar
Braatz, J., Pesce, D., Condon, J., et al. 2018, Science with a Next Generation Very Large Array, 517, 821 Google Scholar
Breen, S. L., Sobolev, A. M., Kaczmarek, J. F., et al. 2019, ApJL, 876, L25 10.3847/2041-8213/ab191cCrossRefGoogle Scholar
Brogan, C. L., Hunter, T. R., Towner, A. P. M., et al. 2019, ApJL, 881, L39 10.3847/2041-8213/ab2f8aCrossRefGoogle Scholar
Brogan, C.L., et al. 2018, in Proc. of IAU Symp. 336, ed. Tarchi, A., Reid, M.J. & Castangia, P., Cambridge University PressGoogle Scholar
Brogan, C.L., et al. 2016, ApJ, 832, 187 10.3847/0004-637X/832/2/187CrossRefGoogle Scholar
Brogan, C. L., Hunter, T. R., Cyganowski, C. J., et al. 2011, ApJL, 739, L16 10.1088/2041-8205/739/1/L16CrossRefGoogle Scholar
Brogan, C., Johnson, K., & Darling, J. 2010, ApJL, 716, L51 10.1088/2041-8205/716/1/L51CrossRefGoogle Scholar
Burns, R. A., Handa, T., Imai, H., et al. 2017, MNRAS, 467, 2367 Google Scholar
Burns, R. A., Handa, T., Nagayama, T., Sunada, K., & Omodaka, T. 2016, MNRAS, 460, 283 10.1093/mnras/stw958CrossRefGoogle Scholar
Caratti o Garatti, A., Stecklum, B., Garcia Lopez, R., et al. 2017, Nature Physics, 13, 276 10.1038/nphys3942CrossRefGoogle Scholar
Carrasco-González, C., Torrelles, J. M., Cantó, J., et al. 2015, Science, 348, 114 10.1126/science.aaa7216CrossRefGoogle Scholar
Caswell, J. L. 2004, MNRAS, 352, 101 10.1111/j.1365-2966.2004.07901.xCrossRefGoogle Scholar
Cesaroni, R., Moscadelli, L., Neri, R., et al. 2018, A&A, 612, 103 Google Scholar
Chen, X., Sobolev, A. M., Ren, Z.-Y., et al. 2020, Nature Astronomy, 4, 1170.10.1038/s41550-020-1144-xCrossRefGoogle Scholar
Chibueze, J. O., Imai, H., Tafoya, D., et al. 2012, ApJ, 748, 146 10.1088/0004-637X/748/2/146CrossRefGoogle Scholar
Cordiner, M. A., Boogert, A. C. A., Charnley, S. B., et al. 2016, ApJ, 828, 51 10.3847/0004-637X/828/1/51CrossRefGoogle Scholar
Cragg, D. M., Sobolev, A. M., & Godfrey, P. D. 2005, MNRAS, 360, 533 10.1111/j.1365-2966.2005.09077.xCrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., & Churchwell, E. 2011, ApJ, 743, 56 10.1088/0004-637X/743/1/56CrossRefGoogle Scholar
Dodson, R. G., & Ellingsen, S. P. 2002, MNRAS, 333, 307 10.1046/j.1365-8711.2002.05428.xCrossRefGoogle Scholar
Elbakyan, V. G., Nayakshin, S., Meyer, D. M.-A., et al. 2023, MNRAS, 518, 791 10.1093/mnras/stac3115CrossRefGoogle Scholar
Felli, M., Brand, J., Cesaroni, R., et al. 2007, A&A, 476, 373 Google Scholar
Fish, V. L., Gray, M., Goss, W. M., & Richards, A. M. S. 2011, MNRAS, 417, 555 10.1111/j.1365-2966.2011.19297.xCrossRefGoogle Scholar
Fish, V. L., & Reid, M. J. 2007, ApJ, 670, 1159 10.1086/522329CrossRefGoogle Scholar
Forbrich, J., Reid, M. J., Menten, K. M., et al. 2017, ApJ, 844, 109 10.3847/1538-4357/aa7aa4CrossRefGoogle Scholar
Ginsburg, A. & Goddi, C. 2019, AJ, 158, 208.10.3847/1538-3881/ab4790CrossRefGoogle Scholar
Ginsburg, A., Walsh, A., Henkel, C., et al. 2015, A&A, 584, L7 Google Scholar
Goddi, C., Moscadelli, L., & Sanna, A. 2011, A&A, 535, L8 Google Scholar
Goedhart, S., et al. 2014, MNRAS, 437, 1808 10.1093/mnras/stt2009CrossRefGoogle Scholar
Gorski, M. D., Aalto, S., Mangum, J., et al. 2021, A&A, 654, A110.Google Scholar
Hakobian, N. S. & Crutcher, R. M. 2012, ApJL, 758, L18.10.1088/2041-8205/758/1/L18CrossRefGoogle Scholar
Hirota, T., Wolak, P., Hunter, T. R., et al. 2022, PASJ, 74, 1234 10.1093/pasj/psac067CrossRefGoogle Scholar
Hirota, T., Machida, M. N., Matsushita, Y., et al. 2017, Nature Astronomy, 1, 0146 10.1038/s41550-017-0146CrossRefGoogle Scholar
Hirota, T., Tsuboi, M., Kurono, Y., et al. 2014, PASJ, 66, 106 10.1093/pasj/psu110CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., De Buizer, J. M., et al. 2021, ApJL, 912, L17 10.3847/2041-8213/abf6d9CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., et al. 2018, ApJ, 854, 170 10.3847/1538-4357/aaa962CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., MacLeod, G. C., et al. 2017, ApJL, 837, L29 10.3847/2041-8213/aa5d0eCrossRefGoogle Scholar
Kulczak-Jastrzebska, M. 2016, Acta Astronomica, 66, 239 Google Scholar
Lekht, E. E., et al. 2018, Astronomy Reports, 62, 213 10.1134/S1063772918030071CrossRefGoogle Scholar
Loinard, L. & Reid, M. J. 2018, Science with a Next Generation Very Large Array, 517, 411Google Scholar
MacLeod, G. C., Sugiyama, K., Hunter, T. R., et al. 2019, MNRAS, 489, 3981 10.1093/mnras/stz2417CrossRefGoogle Scholar
MacLeod, G. C., et al. 2018, MNRAS, 478, 1077 10.1093/mnras/sty996CrossRefGoogle Scholar
Matsumoto, N., Hirota, T., Sugiyama, K., et al. 2014, ApJL, 789, L1 10.1088/2041-8205/789/1/L1CrossRefGoogle Scholar
Matthews, L. D. & Claussen, M. J. 2018, Science with a Next Generation Very Large Array, 517, 281 Google Scholar
Matthews, L., et al. 2010, ApJ, 708, 80 10.1088/0004-637X/708/1/80CrossRefGoogle Scholar
McCarthy, T. P., Breen, S. L., Kaczmarek, J. F., et al. 2023, MNRAS, 522, 4728.10.1093/mnras/stad1278CrossRefGoogle Scholar
McGuire, B. A., Brogan, C. L., Hunter, T. R., et al. 2018, ApJL, 863, L35 10.3847/2041-8213/aad7bbCrossRefGoogle Scholar
Menten, K.M. 2019, private communicationGoogle Scholar
Menten, K. M. 2007, Astrophysical Masers and their Environments, IAU Symposium 242, 496Google Scholar
Miao, D., Chen, X., Song, S.-M., et al. 2022, ApJS, 263, 9 10.3847/1538-4365/ac9524CrossRefGoogle Scholar
Moscadelli, L., Sanna, A., Beuther, H., et al. 2022, Nature Astronomy, 6, 1068 10.1038/s41550-022-01754-4CrossRefGoogle Scholar
Moscadelli, L., Sanna, A., Goddi, C., et al. 2017, A&A, 600, L8 Google Scholar
Moscadelli, L., Sánchez-Monge, Á., Goddi, C., et al. 2016, A&A, 585, A71 Google Scholar
Murphy, E. J., Bolatto, A., Chatterjee, S., et al. 2018, Science with a Next Generation VLA, 517, 3 Google Scholar
National Academies of Sciences, E. 2021, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, Washington, DC: The National Academies Press, 2021 Google Scholar
Nazari, P., Tabone, B., Rosotti, G. P., et al. 2022, A&A, 663, A58 Google Scholar
Palau, A., Fuente, A., Girart, J. M., et al. 2013, ApJ, 762, 120 10.1088/0004-637X/762/2/120CrossRefGoogle Scholar
Parise, B., Caux, E., Castets, A., et al. 2005, A&A, 431, 547 Google Scholar
Plambeck, R. L., & Wright, M. C. H. 2016, ApJ, 833, 219 10.3847/1538-4357/833/2/219CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2014, ApJ, 783, 130 10.1088/0004-637X/783/2/130CrossRefGoogle Scholar
Remijan, A., Seifert, N. A., & McGuire, B. A. 2016, 71st Intl. Symp. on Molecular Spectroscopy, FB11Google Scholar
Sanna, A., Moscadelli, L., Cesaroni, R., et al. 2016, A&A, 596, L2 Google Scholar
Sanna, A., Reid, M. J., Carrasco-González, C., et al. 2012, ApJ, 745, 191 10.1088/0004-637X/745/2/191CrossRefGoogle Scholar
Sanna, A., Moscadelli, L., Cesaroni, R., et al. 2010, A&A, 517, A78 Google Scholar
Selina, R. J., Murphy, E. J., McKinnon, M., et al. 2018, Science with a Next Generation VLA, 517, 15 Google Scholar
Sjouwerman, L. O., Pihlström, Y. M., et al. 2020, Galactic Dynamics in the Era of Large Surveys, 353, 45 Google Scholar
Sobolev, A. M., Cragg, D. M., & Godfrey, P. D. 1997, A&A, 324, 211 Google Scholar
Stecklum, B., Wolf, V., Linz, H., et al. 2021, A&A, 646, A161 Google Scholar
Torrelles, J. M., Trinidad, M. A., Curiel, S., et al. 2014, MNRAS, 437, 3803 10.1093/mnras/stt2177CrossRefGoogle Scholar
Torrelles, J. M., Patel, N. A., Curiel, S., et al. 2011, MNRAS, 410, 627 10.1111/j.1365-2966.2010.17483.xCrossRefGoogle Scholar
Towner, A. P. M., Brogan, C. L., Hunter, T. R., et al. 2017, ApJS, 230, 22 10.3847/1538-4365/aa73d8CrossRefGoogle Scholar
Voronkov, M. A., Walsh, A. J., Caswell, J. L., et al. 2011, MNRAS, 413, 2339 10.1111/j.1365-2966.2011.18297.xCrossRefGoogle Scholar
Xue, C., et al. 2023, in preparationGoogle Scholar
van Gelder, M. L., Nazari, P., Tabone, B., et al. 2022, A&A, 662, A67 Google Scholar
Yonekura, Y., 2022, private communicationGoogle Scholar
Zapata, L. A., Menten, K., Reid, M., & Beuther, H. 2009, ApJ, 691, 332 10.1088/0004-637X/691/1/332CrossRefGoogle Scholar