Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T01:41:31.870Z Has data issue: false hasContentIssue false

Maser polarization simulation in an evolving star: effect of magnetic field on SiO maser in the circumstellar envelope

Published online by Cambridge University Press:  07 February 2024

M. Phetra*
Affiliation:
Graduate School, Chiang Mai University, Chiang Mai 50200. National Astronomical Research Institute of Thailand, Chiang Mai 50180, Thailand
M. D. Gray
Affiliation:
National Astronomical Research Institute of Thailand, Chiang Mai 50180, Thailand
K. Asanok
Affiliation:
National Astronomical Research Institute of Thailand, Chiang Mai 50180, Thailand
B. H. Kramer
Affiliation:
National Astronomical Research Institute of Thailand, Chiang Mai 50180, Thailand Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, Bonn 53121, Germany
K. Sugiyama
Affiliation:
National Astronomical Research Institute of Thailand, Chiang Mai 50180, Thailand
S. Etoka
Affiliation:
Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL, UK
W. Nuntiyakul
Affiliation:
Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Maser polarization changes during a pulsation in the CSE of an AGB star are related in a complicated way to the magnetic field structure. 43 GHz SiO maser transitions are useful for polarization study because of their relatively simple Zeeman splitting structure and their location. This work uses 3D maser simulation to investigate the effect of the magnetic field on maser polarization with different directions. The results show that linear polarization depends on the magnetic direction while circular polarization is less significant. The EVPA changes through π/2 at an angle of around 50 degrees, approximately the Van Vleck angle. The EVPA rotation result from 3D maser simulation is consistent with results from 1D simulations, and may explain the 90 degree change of the EVPA within a single cloud in the observational cases of TX Cam and R Cas.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Assaf, K. A., Diamond, P. J., Richards, A. M. S., & Gray, M. D. 2012, IAU Symposium, 287, 235 10.1017/S1743921312007028CrossRefGoogle Scholar
Assaf, K. A., Diamond, P. J., Richards, A. M. S., & Gray, M. D. 2013, MNRAS, 431, 1077 10.1093/mnras/stt242CrossRefGoogle Scholar
Diamond, P. J., Kemball, A. J. & Boboltz, D. A., 1997, Vistas in Astron., 41, 175 10.1016/S0083-6656(97)00028-7CrossRefGoogle Scholar
Georgiev, S., Lèbre, A., Josselin, E., Mathias, P., Konstantinova-Antova, R., & Sabin, L. 2023, MNRAS, 522, 3861 10.1093/mnras/stad1210CrossRefGoogle Scholar
Goldreich, P., Keeley, D. A., & Kwan, J. Y. 1973, ApJ, 179, 111 10.1086/151852CrossRefGoogle Scholar
Gray, M. D., Mason, L., & Etoka, S. 2018, MNRAS, 477, 2628 10.1093/mnras/sty576CrossRefGoogle Scholar
Herpin, F., Baudry, A., Thum, C., Morris, D., & Wiesemeyer, H. 2006, A&A, 450, 667 Google Scholar
Kemball, A. J., & Diamond, P. J. 1997, ApJ, 481, L111 10.1086/310664CrossRefGoogle Scholar
Nedoluha, G. E., & Watson, W. D. 1994, ApJ, 423, 394 10.1086/173816CrossRefGoogle Scholar
Phetra, M., Gray, M. D., Asanok, K., Kramer, B. H., Sugiyama, K., Chanapote, T., & Nuntiyakul, W. 2023, J Phys Conf Ser, 2431, 012088 10.1088/1742-6596/2431/1/012088CrossRefGoogle Scholar
Tobin, T. L., Kemball, A. J. & Gray, M. D. 2019, ApJ, 871, 189 10.3847/1538-4357/aafac3CrossRefGoogle Scholar
Tobin, T. L., Gray, M. D. & Kemball, A. J. 2023, ApJ, 943, 123 10.3847/1538-4357/aca595CrossRefGoogle Scholar
Vlemming, W. 2019, IAU Symposium, 343, 19 Google Scholar
Watson, W. D. & Wyld, H. W. 2001, ApJ, 558, L55 10.1086/323513CrossRefGoogle Scholar
Western, L. R., & Watson, W. D. 1984, ApJ, 285, 158 10.1086/162487CrossRefGoogle Scholar