Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:37:25.805Z Has data issue: false hasContentIssue false

Intermediate-mass black holes in globular clusters: observations and simulations

Published online by Cambridge University Press:  07 March 2016

Nora Lützgendorf
Affiliation:
ESA, Space Science Department, Keplerlaan 1, NL-2200 AG Noordwijk, The Netherlands email: [email protected]
Markus Kissler-Patig
Affiliation:
Gemini Observatory, Northern Operations Center, 670 N. A'ohoku Place, Hilo, Hawaii, 96720, USA
Karl Gebhardt
Affiliation:
Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA
Holger Baumgardt
Affiliation:
School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
Diederik Kruijssen
Affiliation:
Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748, Garching, Germany
Eva Noyola
Affiliation:
Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA
Nadine Neumayer
Affiliation:
Max-Planck-Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
Tim de Zeeuw
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA, Leiden, The Netherlands
Anja Feldmeier
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany
Edwin van der Helm
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA, Leiden, The Netherlands
Inti Pelupessy
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA, Leiden, The Netherlands
Simon Portegies Zwart
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA, Leiden, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of intermediate-mass black holes (IMBHs) is a young and promising field of research. If IMBHs exist, they could explain the rapid growth of supermassive black holes by acting as seeds in the early stage of galaxy formation. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of globular clusters, today. Our group investigated the presence of intermediate-mass black holes for a sample of 10 Galactic globular clusters. We measured the inner kinematic profiles with integral-field spectroscopy and determined masses or upper limits of central black holes in each cluster. In combination with literature data we further studied the positions of our results on known black-hole scaling relations (such as M − σ) and found a similar but flatter correlation for IMBHs. Applying cluster evolution codes, the change in the slope could be explained with the stellar mass loss occurring in clusters in a tidal field over its life time. Furthermore, we present results from several numerical simulations on the topic of IMBHs and integral field units (IFUs). We ran N-body simulations of globular clusters containing IMBHs in a tidal field and studied their effects on mass-loss rates and remnant fractions and showed that an IMBH in the center prevents core collapse and ejects massive objects more rapidly. These simulations were further used to simulate IFU data cubes. For the specific case of NGC 6388 we simulated two different IFU techniques and found that velocity dispersion measurements from individual velocities are strongly biased towards lower values due to blends of neighboring stars and background light. In addition, we use the Astrophysical Multipurpose Software Environment (AMUSE) to combine gravitational physics, stellar evolution and hydrodynamics to simulate the accretion of stellar winds onto a black hole.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aarseth, S. J. 1999, PASP, 111, 1333Google Scholar
Baumgardt, H., Makino, J., & Ebisuzaki, T. 2004, ApJ, 613, 1143CrossRefGoogle Scholar
Baumgardt, H., Makino, J., & Hut, P. 2005, ApJ, 620, 238Google Scholar
Feldmeier, A., Lützgendorf, N., Neumayer, N., et al. 2013, A&A, 554, AA63Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9Google Scholar
Gill, M., Trenti, M., Miller, M. C., et al. 2008, ApJ, 686, 303Google Scholar
Häring, N. & Rix, H.-W. 2004, ApJ, 604, L89CrossRefGoogle Scholar
Hurley, J. R. 2007, MNRAS, 379, 93CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 543CrossRefGoogle Scholar
Kruijssen, J. M. D. & Lützgendorf, N. 2013, MNRAS, 434, L41Google Scholar
Kustaanheimo, P. & Stiefel, E. 1965, J. Reine Angew. Math., 218, 204Google Scholar
Lanzoni, B., Mucciarelli, A., Origlia, L., et al. 2013, ApJ, 769, 107Google Scholar
Lützgendorf, N., Baumgardt, H., & Kruijssen, J. M. D. 2013a, A&A, 558, A117Google Scholar
Lützgendorf, N., Kissler-Patig, M., Gebhardt, K., et al. 2013b, A&A, 552, A49Google Scholar
Lützgendorf, N., Kissler-Patig, M., Gebhardt, K., et al. 2012, A&A, 542, A129Google Scholar
Lützgendorf, N., Kissler-Patig, M., Neumayer, N., et al. 2013c, A&A, 555, A26Google Scholar
Lützgendorf, N., Kissler-Patig, M., Noyola, E., et al. 2011, A&A, 533, A36Google Scholar
Madau, P. & Rees, M. J. 2001, ApJ, 551, L27CrossRefGoogle Scholar
Nitadori, K. & Aarseth, S. J. 2012, MNRAS, 424, 545Google Scholar
Noyola, E. & Baumgardt, H. 2011, ApJ, 743, 52Google Scholar
Noyola, E., Gebhardt, K., & Bergmann, M. 2008, ApJ, 676, 1008Google Scholar
Pasquini, L., Avila, G., Blecha, A., et al. 2002, The Messenger, 110, 1Google Scholar
Pelupessy, F. I., van Elteren, A., de Vries, N., et al. 2013, A&A, 557, A84Google Scholar
Portegies Zwart, S., McMillan, S., Harfst, S., et al. 2009, New Astronomy, 14, 369Google Scholar
Portegies Zwart, S., McMillan, S. L. W., van, Elterenet al. 2013, Comp. Phys. Comm., 183, 456Google Scholar
Portegies Zwart, S. F., Baumgardt, H., Hut, P.et al. 2004, Nature, 428, 724Google Scholar
Strader, J., Chomiuk, L., Maccarone, T. J., et al. 2012, ApJ, 750, L27Google Scholar
Trenti, M., Ardi, E., Mineshige, S., & Hut, P. 2007, MNRAS, 374, 857Google Scholar
Trenti, M., Vesperini, E., & Pasquato, M. 2010, ApJ, 708, 1598Google Scholar
Vesperini, E. & Trenti, M. 2010, ApJ, 720, L179Google Scholar