Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:28:45.000Z Has data issue: false hasContentIssue false

Hot & cold dust in M31: the resolved SED of Andromeda

Published online by Cambridge University Press:  17 August 2012

Brent Groves
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected], [email protected]
Oliver Krause
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to its proximity, the Andromeda galaxy (M31, NGC 224) offers a unique insight into how the spectra of stars, dust, and gas combine to form the integrated Spectral Energy Distribution (SED) of galaxies. We introduce here Herschel Space Observatory PACS and SPIRE photometric observations of M31 which cover the far-infrared to sub-mm wavelengths (70-500 μm). These new observations reveal that the total IR luminosity of M31 is relatively weak, with LIR=109.65L, only 10% of the total luminosity of M31. However, as seen in the previous studies of M31, the IR luminosity is dominated by a 10 kpc ring in all Herschel bands. This is distinct from the optical, where the bulge in the central 2kpc, dominates the luminosity, clearly demonstrating how different components at distinct positions in a galaxy contribute to make the integrated SED.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Baade, W. & Gaposchkin, C. H. P. 1963, Evolution of stars and galaxies., by Baade, W; Gaposchkin, C.Cambridge, Harvard University PressCrossRefGoogle Scholar
Barmby, P. et al. 2006, ApJL, 650, L45.CrossRefGoogle Scholar
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595CrossRefGoogle Scholar
Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, ApJS, 173, 185CrossRefGoogle Scholar
Gordon, K. D., et al. 2006, ApJL, 638, L87.CrossRefGoogle Scholar
Haas, M., Lemke, D., Stickel, M., et al. 1998, A&A, 338, L33.Google Scholar
Habing, H. J., Miley, G., Young, E., et al. 1984, ApJL, 278, L59.CrossRefGoogle Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E., & Huchra, J. P. 2003, AJ, 125, 525CrossRefGoogle Scholar
Montalto, M., Seitz, S., Riffeser, A., et al. 2009, A&A, 507, 283Google Scholar
Mutch, S. J., Croton, D. J., & Poole, G. B. 2011, ApJ, 736, 84CrossRefGoogle Scholar
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1.Google Scholar
Soifer, B. T., Rice, W. L., Mould, J. R., et al. 1986, ApJ, 304, 651CrossRefGoogle Scholar
Xu, C. & Helou, G. 1996a, ApJ, 456, 152CrossRefGoogle Scholar
Xu, C. & Helou, G. 1996b, ApJ, 456, 163CrossRefGoogle Scholar
Walterbos, R. A. M. & Kennicutt, R. C. Jr. 1987, A&AS, 69, 311Google Scholar
Walterbos, R. A. M. & Schwering, P. B. W. 1987, A&A, 180, 27Google Scholar