Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:12:31.124Z Has data issue: false hasContentIssue false

Galaxy bulges at mid- and high-redshift

Published online by Cambridge University Press:  01 July 2007

Christopher J. Conselice*
Affiliation:
School of Physics and Astronomy, University of Nottingham, Nottingham, U.K.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bulges are a major galaxy component in the nearby universe, and are one of the primary features that differentiates and defines galaxies. The origin of bulges can be directly probed in part by examining distant galaxies to search for high redshift bulges, and to study the properties of bulges in formation. We review the evidence for bulges at high redshift in this article, and how by studying bulges through a variety of approaches, including through morphological, colour, and stellar mass selection, we can determine when and how these systems assembled. We argue that the majority of the most massive ‘classical’ bulges are in place by z ~ 1.5 − 2, and likely formed very early through major mergers. Other, likely lower mass, bulges form through a secular process along with their disks. Direct observations suggest that these two formation processes are occurring, as spheroids are commonly seen at z < 1, as are disks and spiral galaxies in the form of luminous diffuse objects, clump-clusters, and chain galaxies. However, bulge+disk systems are relatively rare until z ~ 1, suggesting that this structural assembly occurred relatively late.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Baugh, C. M., Cole, S., Frenk, C. S., & Lacey, C. G. 1998, ApJ, 498, 504CrossRefGoogle Scholar
Benson, A. J., Frenk, C. S., & Sharples, R. M. 2002, ApJ, 574, 104CrossRefGoogle Scholar
Bershady, M. A., Jangren, J. A., & Conselice, C. J. 2000, AJ, 119, 2645CrossRefGoogle Scholar
Bohm, A., et al. 2004, A&A, 420, 97Google Scholar
Bournaud, F., Elmegreen, B. G., & Elmegreen, D. M. 2007, arXiv:0708.0306Google Scholar
Bridge, C., et al. 2007, ApJ, 659, 931CrossRefGoogle Scholar
Conselice, C. J., Bershady, M. A., & Jangren, A. 2000a, ApJ, 529, 886CrossRefGoogle Scholar
Conselice, C. J., Bershady, M. A., & Gallagher, J. S. 2000b, A&A, 354, 21LGoogle Scholar
Conselice, C. J., Gallagher, J. S. III, & Wyse, R. F. G. 2002, AJ, 123, 2246CrossRefGoogle Scholar
Conselice, C. J. 2003, ApJS, 147, 1CrossRefGoogle Scholar
Conselice, C. J., Bershady, M. A., Dickinson, M., & Papovich, C. 2003a, AJ, 126, 1183CrossRefGoogle Scholar
Conselice, C. J., Chapman, S. C., & Windhorst, R. A. 2003b, ApJ, 596, 5LCrossRefGoogle Scholar
Conselice, C. J., et al. 2004, ApJ, 600, 139LCrossRefGoogle Scholar
Conselice, C. J., Blackburne, J., & Papovich, C. 2005a, ApJ, 620, 564CrossRefGoogle Scholar
Conselice, C. J., Bundy, K., Ellis, R., Brichmann, J., Vogt, N., & Phillips, A. 2005b, ApJ, 628, 160CrossRefGoogle Scholar
Conselice, C. J. 2006a, MNRAS, 373, 1389CrossRefGoogle Scholar
Conselice, C. J. 2006b, ApJ, 638, 686CrossRefGoogle Scholar
Conselice, C. J., et al. 2007a, ApJ, 660, 55LCrossRefGoogle Scholar
Conselice, C. J., et al. 2007b, arXiv::0708.1040Google Scholar
Daddi, E., et al. 2004, ApJ, 600, 127LCrossRefGoogle Scholar
Drory, N. & Fisher, D. B. 2007, ApJ, 664, 640CrossRefGoogle Scholar
Ellis, R. S., Abraham, R., & Dickinson, M. 2001, ApJ, 551, 111CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G. & Hirst, A. C. 2004, ApJ, 604, 21LCrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Rubin, D. S., & Schaffer, M. A. 2005, ApJ, 631, 85CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Ravindranath, S., & Coe, D. A. 2007, ApJ, 658, 763CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 2005, ApJ, 627, 632CrossRefGoogle Scholar
Erb, D. K., et al. 2004, ApJ, 612, 122CrossRefGoogle Scholar
Fontana, A., et al. 2004, A&A, 424, 23Google Scholar
Forster Schreiber, N. M., et al. 2006, ApJ, 645, 1062CrossRefGoogle Scholar
Genzel, R., et al. 2006, Nature, 442, 786CrossRefGoogle Scholar
Giavalisco, M., et al. 2004, ApJ, 600, 93LCrossRefGoogle Scholar
Immeli, A., et al. 2004, ApJ, 611, 20CrossRefGoogle Scholar
Jogee, S., et al. 2004, ApJ, 615, 105LCrossRefGoogle Scholar
Koo, D. C., et al. 2005, ApJS, 157, 175CrossRefGoogle Scholar
Kormendy, J. & Kennicutt, R. C. Jr., 2004, ARA&A, 42, 603Google Scholar
Labbe, I., et al. 2003, ApJ, 591, 95LCrossRefGoogle Scholar
Lanyon-Foster, M. M., Conselice, C. J., & Merrifield, M. 2007, arXiv:0706.2622Google Scholar
Noguchi, M. 1999, ApJ, 514, 77CrossRefGoogle Scholar
Papovich, C., et al. 2005, ApJ, 631, 101CrossRefGoogle Scholar
Pope, A., et al. 2005, MNRAS, 358, 149CrossRefGoogle Scholar
Ravindranath, S., et al. 2004, ApJ, 604, 9LCrossRefGoogle Scholar
Ravindranath, S., et al. 2006, ApJ, 652, 963CrossRefGoogle Scholar
Stanford, S. A., et al. 2004, AJ, 127, 131CrossRefGoogle Scholar
Taylor-Mager, V., Conselice, C., Windhorst, R., & Jansen, R. 2007, ApJ, 659, 162CrossRefGoogle Scholar
Teplitz, H. I., et al. 2006, AJ, 132, 853CrossRefGoogle Scholar
Windhorst, R., et al. 2002, ApJS, 143, 113CrossRefGoogle Scholar
Vogt, N. P., et al. 1997, ApJ, 479, 121LCrossRefGoogle Scholar
Wolf, C., et al. 2005, 630, 771CrossRefGoogle Scholar