Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:58:10.392Z Has data issue: false hasContentIssue false

Flux-transport and mean-field dynamo theories of solar cycles

Published online by Cambridge University Press:  18 July 2013

Arnab Rai Choudhuri*
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore-560012 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We point out the difficulties in carrying out direct numerical simulation of the solar dynamo problem and argue that kinematic mean-field models are our best theoretical tools at present for explaining various aspects of the solar cycle in detail. The most promising kinematic mean-field model is the flux transport dynamo model, in which the toroidal field is produced by differential rotation in the tachocline, the poloidal field is produced by the Babcock–Leighton mechanism at the solar surface and the meridional circulation plays a crucial role. Depending on whether the diffusivity is high or low, either the diffusivity or the meridional circulation provides the main transport mechanism for the poloidal field to reach the bottom of the convection zone from the top. We point out that the high-diffusivity flux transport dynamo model is consistent with various aspects of observational data. The irregularities of the solar cycle are primarily produced by fluctuations in the Babcock–Leighton mechanism and in the meridional circulation. We summarize recent work on the fluctuations of meridional circulation in the flux transport dynamo, leading to explanations of such things as the Waldmeier effect.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Babcock, H. W. 1961, ApJ, 133, 572 Google Scholar
Basu, S. & Antia, H. M. 2010, ApJ, 717, 488 CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, 711, 424 Google Scholar
Chakraborty, S., Choudhuri, A. R., & Chatterjee, P. 2009, Phys. Rev. Lett., 102, 041102 Google Scholar
Charbonneau, P., Beaubien, G., & St-Jean, C. 2007, ApJ, 658, 657 Google Scholar
Charbonneau, P. & Dikpati, M. 2000, ApJ, 543, 1027 CrossRefGoogle Scholar
Chatterjee, P. & Choudhuri, A. R. 2006, Solar Phys., 239, 29 CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019 Google Scholar
Choudhuri, A. R. 1989, Solar Phys., 123, 217 CrossRefGoogle Scholar
Choudhuri, A. R. 1998, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, Cambridge)Google Scholar
Choudhuri, A. R. 2011, In IAU Symp. 273: Physics of Sun and Star Spots (eds. Choudhury, D. P. & Strassenmeier, K. G.), p. 28Google Scholar
Choudhuri, A. R. 2012, In IAU Symp. 286: Comparative Magnetic Minima: Characterizing quiet times in the Sun and Stars (eds. Mandrini, C. H. & Webb, D. F.), p. 350CrossRefGoogle Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103 Google Scholar
Choudhuri, A. R. & Gilman, P. A. 1987, ApJ, 316, 788 CrossRefGoogle Scholar
Choudhuri, A. R. & Karak, B. B. 2009, RAA, 9, 953 Google Scholar
Choudhuri, A. R. & Karak, B. B. 2012, Phys. Rev. Lett., 109, 171103 Google Scholar
Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A, 303, L29 Google Scholar
Dikpati, M. & Gilman, P. A. 2006, ApJ, 649, 498 Google Scholar
D'Silva, S. & Choudhuri, A. R. 1993, A&A, 272, 621 Google Scholar
Durney, B. R. 1995, Solar Phys., 160, 213 Google Scholar
Fan, Y., Fisher, G. H., & DeLuca, E. E. 1993, ApJ, 405, 390 Google Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJ, 715, L133 Google Scholar
Gilman, P. A. 1983, ApJS, 53, 243 Google Scholar
Glatzmaier, G. & Roberts, P. H. 1995, Nature, 377, 203 Google Scholar
Goel, A. & Choudhuri, A. R. 2009, RAA, 9, 115 Google Scholar
Hathaway, D. H. 2012, ApJ, 760, 84 Google Scholar
Hathaway, D. H. & Rightmire, L. 2010, Science, 327, 1350 Google Scholar
Hotta, H. & Yokoyama, T. 2010, ApJ, 714, L308 Google Scholar
Jiang, J. 2013, In IAU Symp. 294: Solar and Astrophysical Dynamos and Magnetic Activity (eds. Kosovichev, A. G., de Gouvieia Dal Pino, E. M. & Yan, Y.), p. 49Google Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Isik, E. 2012, ApJ, submitted.Google Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527 Google Scholar
Karak, B. B. 2010, ApJ, 724, 1021 CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2011, MNRAS, 410, 1503 Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Solar Phys., 278, 137 Google Scholar
Karak, B. B. & Choudhuri, A. R. 2013, In IAU Symp. 294: Solar and Astrophysical Dynamos and Magnetic Activity (eds. Kosovichev, A. G., de Gouvieia Dal Pino, E. M. & Yan, Y.), p. 433Google Scholar
Karak, B. B. & Nandy, D. 2012, ApJ, 761, L13 Google Scholar
Leighton, R. B. 1969, ApJ, 156, 1 Google Scholar
Longcope, D. W. & Choudhuri, A. R. 2002, Solar Phys., 205, 63 Google Scholar
Miesch, M. S., Featherstone, N. A., Rempel, M., & Trampedach, R. 2012, ApJ, 757, 128 Google Scholar
Nandy, D. & Choudhuri, A. R. 2002, Science, 296, 1671 Google Scholar
Nandy, D., Muñoz-Jaramillo, A., & Martens, P. C. H. 2011 Nature 471, 80 Google Scholar
Parker, E. N. 1955, ApJ, 122, 293 Google Scholar
Parker, E. N. 1979, Cosmical Magnetic Fields (Oxford University Press, Oxford)Google Scholar
Steenbeck, M., Krause, F., & Rädler, K. H. 1966, Z. Naturforsch., 21, 369 Google Scholar
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A. 2007, A&A, 471, 301 Google Scholar
Waldmeier, M. 1935, Mitt. Eidgen. Sternw. Zurich, 14, 105 Google Scholar
Wang, Y.-M., Sheeley, N. R., & Nash, A. G. 1991, ApJ, 383, 431 Google Scholar
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, ApJ, 673, 544 Google Scholar
Yoshimura, H. 1975, ApJ, 201, 740 Google Scholar