Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T08:33:35.625Z Has data issue: false hasContentIssue false

The extraordinary outburst in NGC6334I-MM1: the rise of dust and emergence of 6.7 GHz methanol masers

Published online by Cambridge University Press:  16 July 2018

Todd R. Hunter
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA email: [email protected]
Crystal L. Brogan
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA email: [email protected]
James O. Chibueze
Affiliation:
SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, Cape Town, 7405, South Africa
Claudia J. Cyganowski
Affiliation:
SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
Tomoya Hirota
Affiliation:
Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588, Japan
Gordon C. MacLeod
Affiliation:
Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp 1740, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our 2015-2016 ALMA 1.3 to 0.87 mm observations (resolution ~200 au) of the massive protocluster NGC6334I revealed that an extraordinary outburst had occurred in the dominant millimeter dust core MM1 (luminosity increase of 70×) when compared with earlier SMA data. The outburst was accompanied by the flaring of ten maser transitions of three species. We present new results from our recent JVLA observations of Class II 6.7 GHz methanol masers and 6 GHz excited OH masers in this region. Class II masers had not previously been detected toward MM1 in any interferometric observations recorded over the past 30 years that targeted the bright masers toward other members of the protocluster (MM2 and MM3=NGC6334F). Methanol masers now appear both toward and adjacent to MM1 with the strongest spots located in a dust cavity ~1 arcsec (1300 au) north of the MM1B hypercompact HII region. In addition, new excited OH masers appear on the non-thermal source CM2. These data reveal the dramatic effects of episodic accretion onto a deeply-embedded high mass protostar and demonstrate its ongoing impact on the surrounding protocluster.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Breen, S. L., Ellingsen, S. P., Caswell, J. L., et al. 2012, MNRAS, 421, 1703CrossRefGoogle Scholar
Brogan, C. L., Hunter, T. R., et al. 2018, these proceedingsGoogle Scholar
Brogan, C. L., Hunter, T. R., Cyganowski, C. J., et al. 2016, ApJ, 832, 187Google Scholar
Caratti o Garatti, A., Stecklum, B., Garcia Lopez, R., et al. 2016, Nature (Physics) 13, 276Google Scholar
Caswell, J. L., Kramer, B. H., & Reynolds, J. E. 2011, MNRAS, 414, 1914CrossRefGoogle Scholar
Caswell, J. L. 1997, MNRAS, 289, 203Google Scholar
Cragg, D. M., Sobolev, A. M., & Godfrey, P. D. 2005, MNRAS, 360, 533CrossRefGoogle Scholar
Dodson, R. & Moriarty, C. D. 2012, MNRAS, 421, 2395Google Scholar
Ellingsen, S. 1996, Ph.D. Thesis, University of TasmaniaGoogle Scholar
Evans, N. J. II, Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJ (Supplement) 181, 321350Google Scholar
Green, J. A., Caswell, J. L., & McClure-Griffiths, N. M. 2015, MNRAS, 451, 74CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., MacLeod, G., et al. 2017, ApJ (Letters) 837, L29Google Scholar
Hunter, T. R., Brogan, C. L., Megeath, et al., 2006, ApJ, 649, 888Google Scholar
Krishnan, V., Ellingsen, S. P., Voronkov, M. A., & Breen, S. L. 2013, MNRAS, 433, 3346CrossRefGoogle Scholar
MacLeod, G., et al., 2018, these proceedingsGoogle Scholar
Meyer, D. M.-A., Vorobyov, E. I., Kuiper, R., & Kley, W. 2017, MNRAS, 464, L90CrossRefGoogle Scholar
Moscadelli, L., Sanna, A., Goddi, C., et al. 2017, A&A, 600, L8Google Scholar
Norris, R. P., Caswell, J. L., Wellington, K. J., et al. 1988, Nature, 335, 149CrossRefGoogle Scholar
Norris, R. P., Whiteoak, J. B., Caswell, J. L., et al. 1993, ApJ, 412, 222Google Scholar
Safron, E. J., Fischer, W. J., Megeath, S. T., et al. 2015, ApJ (Letters) 800, L5Google Scholar
Sobolev, A. M. & Deguchi, S. 1994, A&A, 291, 569Google Scholar
Tapia, M., Roth, M., & Persi, P. 2015, MNRAS, 446, 4088Google Scholar
Walsh, A. J., Burton, M. G., Hyland, A. R., & Robinson, G. 1998, MNRAS, 301, 640Google Scholar
Yoo, H., Lee, J.-E., Mairs, S., et al. 2017, ApJ, 849, 69Google Scholar
Zernickel, A., Schilke, P., Schmiedeke, A., et al. 2012, A&A, 546, A87Google Scholar