Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T05:00:48.994Z Has data issue: false hasContentIssue false

Evolution and asteroseismology of ultra-massive DA white dwarfs

Published online by Cambridge University Press:  09 October 2020

F. C. De Gerónimo
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina email: [email protected] Instituto de Astrofísica La Plata, CONICET-UNLP
A. H. Córsico
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina email: [email protected] Instituto de Astrofísica La Plata, CONICET-UNLP
M. E. Camisassa
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina email: [email protected] Instituto de Astrofísica La Plata, CONICET-UNLP
L. G. Althaus
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina email: [email protected] Instituto de Astrofísica La Plata, CONICET-UNLP
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ultra-massive (⩾M) oxygen/neon (ONe) core white dwarfs (WDs) are the result of the evolution of isolated progenitor stars with masses above 6−M. It is expected that hydrogen-rich (DA) ultra-massive WDs harbor crystallized cores at the typical temperatures of the ZZ Ceti instability strip. These stars offer a unique opportunity to study the processes of crystallization and to infer their core chemical composition. We present a study of the evolution and asteroseismology of ultra-massive DA WDs. We found that all pulsating WDs known to date with M⩾1.1M should have more than 80% of their mass crystallized, if a ONe-core is assumed. Finally, we present a complete asteroseismological analysis to the well known ZZ Ceti BPM 37093 and a preliminary analysis to GD 518 and SDSS J0840+5222.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Althaus, L. G., Serenelli, A. M., Panei, J. A., et al. 2005, A&A, 435, 631Google Scholar
Brassard, P. & Fontaine, G. 2005, ApJ, 622, 57210.1086/428116CrossRefGoogle Scholar
Camisassa, M. E., Althaus, L. G., Córsico, A. H., et al. 2019, A&A, 625, A87Google Scholar
Córsico, A. H., Althaus, L. G., Montgomery, M. H., et al. 2005, A&A, 429, 277Google Scholar
Curd, B., Gianninas, A., Bell, K. J., et al. 2017, MNRAS, 468, 23910.1093/mnras/stx320CrossRefGoogle Scholar
Hermes, J. J., Kepler, S. O., Castanheira, B. G., et al. 2013, ApJL, 771, L210.1088/2041-8205/771/1/L2CrossRefGoogle Scholar
Kanaan, A., Kepler, S. O., Giovannini, O., et al. 1992, ApJL, 390, L8910.1086/186379CrossRefGoogle Scholar
Medin, Z. & Cumming, A. 2010, Phys. Rev. E, 81, 036107CrossRefGoogle Scholar
Metcalfe, T. S., Montgomery, M. H., & Kanaan, A. 2004, ApJL, 605, L13310.1086/420884CrossRefGoogle Scholar
Montgomery, M. H. & Winget, D. E. 1999, ApJ, 526, 97610.1086/308044CrossRefGoogle Scholar
Nitta, A., Kepler, S. O., Chené, A.-N., et al. 2016, IAU Focus Meeting, 29B, 493Google Scholar
Siess, L. 2010, A&A, 512, A10Google Scholar