Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T17:13:19.502Z Has data issue: false hasContentIssue false

Constraining the dynamical mass of the massive binary 9 Sagittarii

Published online by Cambridge University Press:  29 August 2024

Matthias Fabry*
Affiliation:
Institute of Astronomy (IvS), Celestijnenlaan 200D, 3001 Leuven, Belgium
Calum Hawcroft
Affiliation:
Institute of Astronomy (IvS), Celestijnenlaan 200D, 3001 Leuven, Belgium
Abigail J. Frost
Affiliation:
Institute of Astronomy (IvS), Celestijnenlaan 200D, 3001 Leuven, Belgium
Laurent Mahy
Affiliation:
Institute of Astronomy (IvS), Celestijnenlaan 200D, 3001 Leuven, Belgium Royal Observatory of Belgium (ROB), Avenue Circulaire 3, 1180 Brussels, Belgium
Pablo Marchant
Affiliation:
Institute of Astronomy (IvS), Celestijnenlaan 200D, 3001 Leuven, Belgium
Jean-Baptiste Le Bouquin
Affiliation:
Institute of Planetology and Astrophysics (IPAG), Grenoble University, Rue de la Piscine 414, 38400 St-Martin d’Hères, France
Hugues Sana
Affiliation:
Institute of Astronomy (IvS), Celestijnenlaan 200D, 3001 Leuven, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Especially in the upper Hertzsprung-Russell diagram, where stellar physics is least understood, obtaining model independent masses is of great value. Spectroscopic binaries that are also resolved astrometrically are an excellent alternative to eclipsing double-lined spectroscopic binaries where dynamical masses can be measured. 9 Sgr is such a massive binary. However, its characterization is troubled by conflicting conclusions from the spectroscopic analysis on the one hand and the interferometric one on the other hand. In this work, we attempt to resolve this tension by applying a novel approach to spectral disentangling of the spectroscopic data to constrain better the mass of 9 Sgr.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, D. C., Bieging, J. H., & Churchwell, E. 1984, ApJ, 280, 671 Google Scholar
Brott, I., et al. 2011, A&A, 530, A115 Google Scholar
Fabry, M., Hawcroft, C., Frost, A. J., Mahy, L., Marchant, P., Le Bouquin, J.-B., & Sana, H. 2021, A&A, 651, A119 Google Scholar
Collaboration, Gravity et al. 2017, A&A, 602, A94 Google Scholar
Hadrava, P. 1995, A&AS, 114, 393 Google Scholar
Ilijić, S. 2017, ASCL, ascl:1705.012Google Scholar
Le Bouquin, J.-B., et al. 2011, A&A, 535, A67 Google Scholar
Le Bouquin, J.-B. 2017, A&A, 601, A34 Google Scholar
Nazé, Y., Becker, M. D., Rauw, G., & Barbieri, C. 2008, A&A, 483, 543 Google Scholar
Pittard, J. M., & Dougherty, S. M. 2006, MNRAS, 372, 801 Google Scholar
Rauw, G., & Nazé, Y. 2016, AdSpR, 58, 761 Google Scholar
Rauw, G., Nazé, Y., Gosset, E., Stevens, I. R., Blomme, R., Corcoran, M. F., Pittard, J. M., & Runacres, M. C. 2002a, A&A, 395, 499 Google Scholar
Rauw, G., Sana, H., Spano, M., Gosset, E., Mahy, L., De Becker, M., & Eenens, P. 2012, A&A, 542, A95 Google Scholar
Rauw, G., Vreux, J.-M., Stevens, I. R., Gosset, E., Sana, H., Jamar, C., & Mason, K. O. 2002b, A&A, 388, 552 Google Scholar
Rauw, G., et al. 2002c, A&A, 394, 993 Google Scholar
Rauw, G. 2016, A&A, 589, A121 Google Scholar
Sana, H., Rauw, G., Nazé, Y., Gosset, E., & Vreux, J.-M. 2006, MNRAS, 372, 661 Google Scholar
Sana, H., Stevens, I. R., Gosset, E., Rauw, G., & Vreux, J.-M. 2004, MNRAS, 350, 809 Google Scholar
Santolaya-Rey, A. E., Puls, J., & Herrero, A. 1997, A&A, 323, 488 Google Scholar
Schneider, F. R. N., Langer, N., de Koter, A., Brott, I., Izzard, R. G., & Lau, H. H. B. 2014, A&A, 570, A66 Google Scholar
Simon, K. P., & Sturm, E. 1994, A&A, 281, 286 Google Scholar
Supplementary material: PDF

Fabry et al. supplementary material

Fabry et al. supplementary material

Download Fabry et al. supplementary material(PDF)
PDF 2.9 MB