Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T00:49:58.711Z Has data issue: false hasContentIssue false

Challenges of magnetism in the turbulent Sun

Published online by Cambridge University Press:  01 August 2006

Allan Sacha Brun
Affiliation:
DSM/DAPNIA/SAp & UMR AIM 7158, CEA-Saclay, 91191 Gif-sur-Yvette, France email: [email protected]
Mark S. Miesch
Affiliation:
HAO, NCAR, Boulder, CO 80307-3000, USA, email: [email protected]
Juri Toomre
Affiliation:
JILA, University of Colorado, UCB440, Boulder, CO 80309-0440, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three-dimensional global modelling of turbulent convection coupled to rotation and magnetism within the Sun are revealing processes relevant to many stars. We study spherical shells of compressible convection spanning many density scale heights using the MHD version of the anelastic spherical harmonic (ASH) code on massively parallel supercomputers. The simulations reveal that strong magnetic fields can be realized in the bulk of the solar convection zone while still attaining differential rotation profiles that make good contact with helioseismic findings. We find that the Maxwell and Reynolds stresses present in such a turbulent layer play an important role in redistributing angular momentum, with the latter maintaining the differential rotation, aided by baroclinic forcing at the base of the convection zone which is consistent with a tachocline there. The dynamo processes generate strong non-axisymmetric and intermittent fields and weak mean (axisymmetric) fields, but do not possess a regular cyclic magnetism. The explicit inclusion of penetrative convection into the tachocline below is modifying such behavior, serving to build strong toroidal magnetic fields there that may yield more prominent mean fields that have the potential of erupting upward.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Browning, M., Miesch, M.S., Brun, A.S., & Toomre, J. 2006, ApJL, 648, 157CrossRefGoogle Scholar
Brun, A. S. 2004, Solar Phys., 220, 333CrossRefGoogle Scholar
Brun, A. S. & Toomre, J. 2002, ApJ, 570, 865CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073 (BMT04)CrossRefGoogle Scholar
Clune, T. L., Elliott, J. R., Glatzmaier, G. A., Miesch, M. S., & Toomre, J. 1999, Parallel Comput., 25, 361CrossRefGoogle Scholar
Corbard, et al. 1999Google Scholar
Glatzmaier, G. A. 1987, in The Internal Solar Angular Velocity, ed. Durney, B. R., & Sofia, S. (Dordrecht: D. Reidel), 263CrossRefGoogle Scholar
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618CrossRefGoogle Scholar
Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. L., Glatzmaier, G. A., & Gilman, P. A., 2000, ApJ, 532, 593CrossRefGoogle Scholar
Parker, E. N. 1993, ApJ, 408, 707CrossRefGoogle Scholar
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., & Toomre, J. 2003, Ann. Rev. Astron. Astrophys., 41, 599CrossRefGoogle Scholar
Tobias, S. M., Brummell, N. H., Clune, T.L., & Toomre, J. 2001, ApJ, 549, 1183CrossRefGoogle Scholar