Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T16:25:17.091Z Has data issue: false hasContentIssue false

Astrophysical MHD turbulence: confluence of observations, simulations, and theory

Published online by Cambridge University Press:  18 July 2013

Blakesley Burkhart
Affiliation:
Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711, USA
Alex Lazarian
Affiliation:
Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetohydrodynamic (MHD) turbulence is a critical component of the current paradigms of star formation, dynamo theory, particle transport, magnetic reconnection and evolution of the ISM. In order to gain understanding of how MHD turbulence regulates processes in the Galaxy, a confluence of numerics, observations and theory must be imployed. In these proceedings we review recent progress that has been made on the connections between theoretical, numerical, and observational understanding of MHD turbulence as it applies to both the neutral and ionized interstellar medium.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Armstrong, J. W., Rickett, B. J., & Spangler, S. R. 1995, ApJ, 443, 209 Google Scholar
Beetz, C., Schwarz, C., Dreher, J., & Grauer, R. 2008, Phys. Lett. A, 372, 3037 Google Scholar
Beresnyak, A. & Lazarian, A., 2010, ApJL, 722, L110 CrossRefGoogle Scholar
Beresnyak, A., Lazarian, A., & Cho, J. 2005, ApJL, 624, L93 CrossRefGoogle Scholar
Berkhuijsen, E., M. & Fletcher, A., 2008, MNRAS, 390, 19 Google Scholar
Brunt, C. & Heyer, M. 2002, ApJ, 566, 27 Google Scholar
Brunt, C. M., 2010, A&A, 513, A67 Google Scholar
Burkhart, B., Falceta-Gonçalves, D., Kowal, G., & Lazarian, A. 2009, ApJ, 693, 250 Google Scholar
Burkhart, B., Stanimirovic, S., Lazarian, A., & Grzegorz, K., 2010, ApJ, 708, 1204 Google Scholar
Burkhart, B. & Lazarian, A., 2011, ASPC, 44, 9 Google Scholar
Burkhart, B., Lazarian, A., & Gaensler, B., 2012, ApJ, 708, 1204 Google Scholar
Burkhart, B. & Lazarian, A., 2012, ApJ, 755, 19 Google Scholar
Chepurnov, A., Lazarian, A., Gordon, J., & Stanimirovic, S., 2008, ApJ, 688, 1021 CrossRefGoogle Scholar
Chepurnov, A. & Lazarian, A. 2010, ApJ, 710, 853 CrossRefGoogle Scholar
Chepurnov, A., Lazarian, A., Stanimirović, S., Heiles, C., & Peek, J. E. G., 2010, ApJ, 714, 1398 Google Scholar
Cho, J. & Lazarian, A. 2002, Phys. Rev. Lett., 88, 5001 Google Scholar
Cho, J. & Lazarian, A. 2003, MNRAS, 345, 325 CrossRefGoogle Scholar
Cho, J., Vishniac, E. T., Beresnyak, A., Lazarian, A., & Ryu, D. 2009, ApJ, 693, 1449 Google Scholar
Crovisier, J. & Dickey, J. M. 1983, A&A, 122, 282 Google Scholar
Elmegreen, B. & Scalo, J., ARA&A, 42, 211 (2004)Google Scholar
Esquivel, & Lazarian, , 2005, ApJ, 631, 320 Google Scholar
Esquivel, A. & Lazarian, A., 2010, ApJ, 710, 125 Google Scholar
Esquivel, A. & Lazarian, A., 2011, ApJ, 740, 117 (EL11)Google Scholar
Falceta-Gonçalves, D., Lazarian, A., & Kowal, G., 2008, ApJ, 679, 537 CrossRefGoogle Scholar
Gaensler, et al., 2011, Nature, 478, 214 Google Scholar
Gill, A. & Henriksen, R. N., ApJ, 365, L27 (1990)Google Scholar
Goldreich, P. & Sridhar, S. 1995, ApJ, 438, 763 (GS95)Google Scholar
Goodman, A. A., Pineda, J. E., & Schnee, S. L. 2009, ApJ, 692, 91 Google Scholar
Hill, et al., 2008, ApJ, 686, 363 Google Scholar
Kolmogorov, A. 1941, Akademiia Nauk SSSR Doklady, 30, 301 Google Scholar
Kowal, G., Lazarian, A., & Beresnyak, A. 2007, ApJ, 658, 423 Google Scholar
Lazarian, A. 1992, AAP, 264, 326 Google Scholar
Lazarian, A. 2006, ApJL, 645, L25 Google Scholar
Lazarian, A. & Pogosyan, D. 2006, ApJ, 652, 1348 Google Scholar
Lazarian, A. & Pogosyan, D. 2004, ApJ, 616, 943 Google Scholar
Lazarian, A. & Vishniac, E. 1999, ApJ, 517, 700 (LV99)Google Scholar
Leão, I., Burkhart, B., Lazarian, A., & Medeiros, R., 2012, ApJ, in prep. (LBLM12)Google Scholar
Ossenkopf, V., 2002, A&A, 391, 295 Google Scholar
Padoan, P., Nordlund, A., & Jones, B. J. T. 1997, MNRAS, 288, 145 Google Scholar
Padoan, et al., 2003, ApJ, 588, 881 Google Scholar
Peek, et al., 2011, ApJS, 194, 20 Google Scholar
Price, D., Federrath, C., & Brunt, C., 2011, ApJ, 727Google Scholar
Rosolowsky, et al., 1999, ApJ, 524, 887 Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E., & Tatsuno, T. 2009, ApJS, 182, 310 Google Scholar
Stanimirovic, S. & Lazarian, A., ApJ, 551, L53 (2001)Google Scholar
Stanimirovic, S., Staveley-Smith, L., Dickey, J. M., Sault, R. J., & Snowden, S. L., MNRAS, 302, 417 (1999)Google Scholar
Stutzki, J., Bensch, F., Heithausen, A., Ossenkopf, V., & Zielinsky, M., A&A, 336, 697 (1998)Google Scholar
Toffelmire, B., Burkhart, B., & Lazarian, A., 2011, ApJ, 736, 60 Google Scholar