Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T02:23:19.889Z Has data issue: false hasContentIssue false

Angular momentum and overshooting: two as yet unsolved problems in stellar mixing

Published online by Cambridge University Press:  01 April 2008

V. M. Canuto
Affiliation:
NASA, Goddard Institute for Space Studies, New York, NY 10025, USA email: [email protected], [email protected] Dept. of Appl. Phys. and Appl. Math., Columbia University, New York, NY 10027, USA
Y. Cheng
Affiliation:
NASA, Goddard Institute for Space Studies, New York, NY 10025, USA email: [email protected], [email protected] Ctr. Clim. Sys. Res., Columbia University, New York, NY 10025, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Helioseismological data have given us two interesting results: the differential-to-uniform solar rotation curve and the extent of the overshooting region (OV). As of today, no model (including numerical simulations) has been able to reproduce these findings. Here, we first present a new model for the angular momentum. It contains new terms representing vorticity and buoyancy that were left out in all previous formulations without a clear justification. It is shown that they extract angular momentum from the stellar core, a welcome feature since the standard angular momentum equation leads to a rotation curve that is considerably higher than what is observed. As for the overshooting extent, all models yield values that are an order of magnitude larger than the helio data of 0.07Hp. We propose a criterion whose main ingredient is a new flux conservation law that includes new terms, one of which increases the dissipation in the radiative zone and thus lowers the OV extent, a tendency in the desired direction. Since we have not coupled the new models to a solar structure-evolution code, we cannot at this stage carry out a comparison with the helio data. The purpose is to exhibit the fact that in both cases the missing ingredients are of such nature as to improve the previous model predictions. A proper quantification remains to be done.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bertin, F., Barat, J., & Wilson, R. 1997, Radio Science 32, 791CrossRefGoogle Scholar
Brummell, N. H., Clune, T. L., & Toomre, J. 2002, ApJ 570, 825CrossRefGoogle Scholar
Brun, A. S. & Toomre, J. 2002, ApJ 570, 865CrossRefGoogle Scholar
Canuto, V. M. 1997, ApJ 482, 827CrossRefGoogle Scholar
Canuto, V. M., Minotti, F., & Shilling, O. 1994, ApJ 425, 303CrossRefGoogle Scholar
Canuto, V. M. & Dubovikov, M. S. 1998, ApJ 493, 834CrossRefGoogle Scholar
Canuto, V. M. & Minotti, F. 2001, Mon. Not R. Astron. Soc. 328, 829CrossRefGoogle Scholar
Canuto, V. M., Cheng, Y., Howard, A. M., & Esau, I. N. 2008, J. Atmos. Sci., in pressGoogle Scholar
Canuto, V. M. 2008, in: Hillebrandt, W. & Kupka, F. (eds.), Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics (Berlin: Springer)Google Scholar
Charbonnel, C. & Talon, S. 2005, Science 309, 2189CrossRefGoogle Scholar
Charbonnel, C. & Talon, S. 2007, Science 318, 922CrossRefGoogle Scholar
Kondo, J., Kanechika, O., & Yasuda, N. 1978, J. Atmos. Sci. 35, 10122.0.CO;2>CrossRefGoogle Scholar
Maeder, A. & Meynet, G. 2001, A&A 373, 555Google Scholar
Mathis, S., Palacios, A., & Zahn, J. P. 2004, A&A 425, 243Google Scholar
Ohya, Y. 2001, Boundary-Layer Meteorol. 98, 57CrossRefGoogle Scholar
Palacios, A., Talon, S., Charbonnel, C., & Forestini, M. 2003, A&A 399, 603Google Scholar
Palacios, A., Charbonnel, C., Talon, S., & Seiss, L. 2006, A&A 453, 261Google Scholar
Rehmann, C. R. & Koseff, J. R. 2004, Dynamics of Atmospheres and Ocean 37, 271CrossRefGoogle Scholar
Roxburgh, I. W. 1978, A&A 65, 281Google Scholar
Strang, E. J. & Fernando, H. J. S. 2001, J. Phys. Ocean. 31, 20262.0.CO;2>CrossRefGoogle Scholar
Stretch, D. D., Rottman, J. W., Nomura, K. K., & Venayagamoorthy, S. K. 2001, in: Dally, B.B. (eds.), Proc. Fourteenth Australasian Fluid Mech. Conf., Adelaide University, South Australia, 612628Google Scholar
Talon, S. & Zahn, J. P. 1998, A&A 329, 315Google Scholar
Talon, S. & Charbonnel, C. 2003, A&A 405, 1025Google Scholar
Thompson, M. J., Christensen-Dalsgaard, J., Miesh, M. S., & Toomre, J. 2003, Annu. Rev. Astron. Astrophys. 41, 599CrossRefGoogle Scholar
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., & Rogachevskii, I. 2007, Boundary Layer Meteorol. 125, 167CrossRefGoogle Scholar
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I., Mauritsen, T., & Miles, M. W. 2008, Quart. J. Roy. Meteor. Soc., in pressGoogle Scholar