Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T12:16:22.630Z Has data issue: false hasContentIssue false

Action of Winds Inside and Outside of Star Clusters

Published online by Cambridge University Press:  27 April 2011

Jan Palouš
Affiliation:
Astronomical Institute, ASCR BočníII 1401, CZ-141 31, Prague 4, Czech Republic email: [email protected]
Jim Dale
Affiliation:
Astronomical Institute, ASCR BočníII 1401, CZ-141 31, Prague 4, Czech Republic email: [email protected]
Richard Wünsch
Affiliation:
Astronomical Institute, ASCR BočníII 1401, CZ-141 31, Prague 4, Czech Republic email: [email protected]
Sergiy Silich
Affiliation:
Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, Mexico email: [email protected]
Guillermo Tenorio-Tagle
Affiliation:
Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, Mexico email: [email protected]
Anthony Whitworth
Affiliation:
School of Physics and Astronomy, Cardiff University, Queens Building, The Parade, Cardiff, CF24 3AA, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The feedback form pre-main sequence and young stars influences their vicinity. The stars are formed in clusters, which implies that the winds of individual stars collide with each other. Inside of a star cluster, winds thermalize a fraction of their kinetic energy, forming a very hot medium able to escape from the cluster in the form of a large-scale wind. Outside of the cluster, the cluster wind forms a shock front as it interacts with the ambient medium which is accreted onto the expanding shell. A variety of instabilities may develop in such shells, and in some cases they fragment, triggering second generation of star formation. However, if the cluster surpasses a certain mass (depending on the radius and other parameters) the hot medium starts to be thermally unstable even inside of the cluster, forming dense warm clumps. The formation of next generations of stars may start if the clumps are big enough to self-shield against stellar radiation creating cold dense cores.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Chevalier, R. A. & Clegg, A. W. 1985, Nature, 317, 44CrossRefGoogle Scholar
Dale, J., Wünsch, R., Whitworth, A., & Palouš, J. 2009, MNRAS, 398, 1537CrossRefGoogle Scholar
Dale, J., Wünsch, R.Smith, R. J., Whitworth, A., & Palouš, J 2010, MNRAS, submittedGoogle Scholar
Deharveng, L., Lefloch, B., Zavagno, A., Caplan, J., Whitworth, A. P., Nadeau, D., & Martín, S.A&A, 408, L25Google Scholar
Deharveng, L., Zavagno, A., Schuller, F., Caplan, J., Pomarès, M. & De Breuck, C. 2009, A&A, 496, 177Google Scholar
Ehlerová, S., Palouš, J. 2005, A&A, 437, 101Google Scholar
Elmegreen, B. G. & Lada, C. J. 1977, ApJ, 214, 725CrossRefGoogle Scholar
Elmegreen, B. G. 1994 ApJ, 427, 384CrossRefGoogle Scholar
Hartmann, D. & Burton, W. B. 1997, Atlas of Galactic Neutral Hydrogen, Cambridge University PressGoogle Scholar
Hueyotl-Zahuantitla, F., Tenorio-Tagle, G., Wünsch, R., Silich, S., & Palouš, J. 2010, ApJ, 716, 324CrossRefGoogle Scholar
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., & Green, A. J. 2002, ApJ, 578, 176CrossRefGoogle Scholar
Palouš, J., Wünsch, R., Silich, S., & Tenorio-Tagle, G. 2010 in preparationGoogle Scholar
Plewa, T. 1995, MNRAS, 275, 143CrossRefGoogle Scholar
Sidorin, V. 2008 IR, optical and X-ray counterparts of HI shells in the Milky Way, Diploma Thesis, Charles University, PragueGoogle Scholar
Silich, S., Tenorio-Tagle, G., Muñoz-Tuñon, C., Hueyotl-Zahuantiutla, F., Wünsch, R., & Palouš, J. 2010, ApJ, 711, 25CrossRefGoogle Scholar
Tenorio-Tagle, G., Wünsch, R., Silich, S., & Palouš, J. 2007, ApJ, 658, 1196CrossRefGoogle Scholar
Tenorio-Tagle, G., Wünsch, R., Silich, S., Muñoz-Tuñon, C., & Palouš, J. 2010, ApJ, 708, 1621CrossRefGoogle Scholar
Vishniac, E. T. 1983 ApJ, 274, 152CrossRefGoogle Scholar
Walter, F. & Brinks, E. 1999, AJ, 118, 273CrossRefGoogle Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C. Jr., Thornley, M. D., & Leroy, A. 2008, AJ, 136, 2563CrossRefGoogle Scholar
Watson, C., Corn, T., Churchwell, E. B., Babler, B. L., Povich, M. S., Meade, M. R., & Whitney, B. A. 2009 ApJ, 694, 546CrossRefGoogle Scholar
Whitworth, A.P., Bhattal, A. S., Chapman, S. J., Disney, M. J., & Turner, J. A. 1994 MNRAS, 268, 1341CrossRefGoogle Scholar
Wünsch, R., Silich, S., Palouš, J., & Tenorio-Tagle, G. 2007, A&A, 471, 579Google Scholar
Wunsch, R., Tenorio-Tagle, G., Palouš, J., & Silich, S. 2008, ApJ, 683, 683CrossRefGoogle Scholar
Wünsch, R., Dale, J., Palouš, J., & Whitworth, A. P. 2010, MNRAS, in pressGoogle Scholar
Zavagno, A., Deharveng, L., Comerón, F., Brand, J., Massi, F., Caplan, J., & Russeil, D. 2008 A&A, 446, 171Google Scholar