Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T02:08:19.007Z Has data issue: false hasContentIssue false

658 GHz vibrationally-excited water masers with the Submillimeter Array

Published online by Cambridge University Press:  01 March 2007

T. R. Hunter
Affiliation:
NRAO, 520 Edgemont Rd, Charlottesville, VA 22903, USA email: [email protected]
K. H. Young
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
R. D. Christensen
Affiliation:
Submillimeter Array, 645 North A'ohoku Place, Hilo, HI 96720, USA
M. A. Gurwell
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Discovered in 1995 at the Caltech Submillimeter Observatory (CSO), the vibrationally-excited water maser line at 658 GHz (455 micron) is seen in oxygen-rich giant and supergiant stars. Because this maser can be so strong (up to thousands of Janskys), it was very helpful during the commissioning phase of the highest frequency band (620-700 GHz) of the Submillimeter Array (SMA) interferometer. From late 2002 to early 2006, brief attempts were made to search for emission from additional sources beyond the original CSO survey. These efforts have expanded the source count from 10 to 16. The maser emission appears to be quite compact spatially, as expected from theoretical considerations; thus these objects can potentially be used as atmospheric phase calibrators. Many of these objects also exhibit maser emission in the vibrationally-excited SiO maser at 215 GHz. Because both maser lines likely originate from a similar physical region, these objects can be used to test techniques of phase transfer calibration between millimeter and submillimeter bands. The 658 GHz masers will be important beacons to assess the performance of the Atacama Large Millimeter Array (ALMA) in this challenging high-frequency band.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Alcolea, J., Bujarrabal, V., & Gomez-Gonzalez, J. 1990, A&A, 231, 431Google Scholar
Alcolea, J., & Menten, K. M. 1993, LNP Vol. 412: Astrophysical Masers 412, 399Google Scholar
Barber, R. J., Miller, S., Stallard, T. S., & Tennyson, J. 2006, ArXiv Astrophysics e-prints, arXiv:astro-ph/0610673Google Scholar
Belov, S. P., Kozin, I. N., Polyansky, O. L., Tret'yakov, M. Y., & Zobov, N. F. 1987, Journal of Molecular Spectroscopy 126, 113Google Scholar
Blundell, R. 2004, Proceedings of the 15th International Symposium on Space Terahertz Technology, April 27-29, 2004, p. 3, ArXiv Astrophysics e-prints, arXiv:astro-ph/0508492Google Scholar
Boboltz, D. A., & Diamond, P. J. 2005, ApJ, 625, 978CrossRefGoogle Scholar
Brünken, S., Müller, H. S. P., Endres, C. P., Giesen, T. F., Mäder, H., Pearson, J. C., & Drouin, B. J. 2005, Astrochemistry: Recent Successes and Current Challenges 231, 97Google Scholar
Butler, B. 2003, ALMA Memo 478, “Distance to Possible Calibration Sources as a Function of Frequency for ALMA”Google Scholar
Camy-Peyret, C., Flaud, J. M., Maillard, J. P., & Guelachvili, G. 1977, Molecular Physics 33, 1641Google Scholar
Cernicharo, J., Thum, C., Hein, H., John, D., Garcia, P., & Mattioco, F. 1990, A&A, 231, L15Google Scholar
Chen, P., Pearson, J. C., Pickett, H. M., Matsuura, S., & Blake, G. A. 2000, ApJS, 128, 371Google Scholar
Chen, X., Shen, Z.-Q., Imai, H., & Kamohara, R. 2006, ApJ, 640, 982Google Scholar
Chen, H.-R., et al. 2007, ApJ, 654, L87Google Scholar
Cho, S.-H., Kaifu, N., & Ukita, N. 1996, A&AS, 115, 117Google Scholar
Colomer, F., Reid, M. J., Menten, K. M., & Bujarrabal, V. 2000, A&A, 355, 979Google Scholar
Diamond, P. J., & Kemball, A. J. 2003, ApJ, 599, 1372Google Scholar
Herpin, F., Baudry, A., Thum, C., Morris, D., & Wiesemeyer, H. 2006, A&A, 450, 667Google Scholar
Herzberg, G.Molecular spectra and molecular structure. Vol.2: Infrared and Raman spectra of polyatomic molecules”, New York: Van Nostrand, Reinhold, 1945Google Scholar
Hinkle, K. H., & Barnes, T. G. 1979, ApJ, 227, 923CrossRefGoogle Scholar
Humphreys, R. M. 2006, ArXiv Astrophysics e-prints, arXiv:astro-ph/0610433Google Scholar
Hunter, T. R., et al. 2002, Bulletin of the American Astronomical Society, 34, 1302, arXiv:astro-ph/0704.2641Google Scholar
Hunter, T. R., et al. 2005, ArXiv Astrophysics e-prints, arXiv:astro-ph/0509467Google Scholar
Jouglet, D., Poulet, F., Mustard, J. F., Milliken, R. E., Bibring, J. P., Langevin, Y., & Gondet, B. 2006, 37th Annual Lunar and Planetary Science Conference 37, 1741Google Scholar
Justtanont, K., de Jong, T., Tielens, A. G. G. M., Feuchtgruber, H., & Waters, L. B. F. M. 2004, A&A, 417, 625Google Scholar
Kubo, D. Y., Hunter, T. R., Christensen, R. D., & Yamaguchi, P. I. 2006, Proc. of the SPIE, 6275, 63Google Scholar
Lada, C. J., & Reid, M. J. 1978, ApJ, 219, 95CrossRefGoogle Scholar
Laing, R. 2004, ALMA Commissioning and Science Verification Plan, ALMA-90.00.00.00-007-B-PLAGoogle Scholar
Lipscy, S. J., Jura, M., & Reid, M. J. 2005, ApJ, 626, 439Google Scholar
Melnick, G. J., Menten, K. M., Phillips, T. G., & Hunter, T. 1993, ApJ, 416, L37CrossRefGoogle Scholar
Menten, K. M., & Young, K. 1995, ApJ, 450, L67CrossRefGoogle Scholar
Menten, K. M., & Melnick, G. J. 1989, ApJ, 341, L91Google Scholar
Menten, K. M., Melnick, G. J., Phillips, T. G., & Neufeld, D. A. 1990, ApJ, 363, L27Google Scholar
Menten, K. M., Melnick, G. J., & Phillips, T. G. 1990, ApJ, 350, L41CrossRefGoogle Scholar
Menten, K. M., Philipp, S. D., Güsten, R., Alcolea, J., Polehampton, E. T., & Brünken, S. 2006, A&A, 454, L107Google Scholar
Muller, S., Dinh-V-Trung, , Lim, J., Hirano, N., Muthu, C., & Kwok, S. 2007, ApJ, 656, 1109Google Scholar
Myers, P. C., & Barrett, A. H. 1982, ApJ, 263, 716Google Scholar
Paine, S. 2006, SMA Memo 152, rev. 3. “The am Atmospheric Model” (http://cfarx6.cfa.harvard.edu/am)Google Scholar
Pearson, J. C., De Lucia, F. C., Anderson, T., Herbst, E., & Helminger, P. 1991, ApJ, 379, L41Google Scholar
Petuchowski, S. J., & Bennett, C. L. 1991, ApJ, 367, 168Google Scholar
Poglitsch, A., et al. 2006, 36th COSPAR Scientific Assembly 36, 215Google Scholar
Reipurth, B., Aspin, C., Beck, T., Brogan, C., Connelley, M. S., & Herbig, G. H. 2007, AJ, 133, 1000Google Scholar
Schilke, P., Benford, D. J., Hunter, T. R., Lis, D. C., & Phillips, T. G. 2001, ApJS, 132, 281Google Scholar
Teipen, R., Justen, M., Tils, T., Schultz, M., Glenz, S., Putz, P., Honingh, C.E., Jacobs K. 2005, 16th Int. Symp. on Space THz Technology; Göteborg, Sweden, May 2-4 2005Google Scholar
Wittkowski, M., Langer, N., & Weigelt, G. 1998, A&A, 340, L39Google Scholar
Wootten, A. 2007, ArXiv Astrophysics e-prints, arXiv:astro-ph/0702668Google Scholar
Yi, J., Booth, R. S., Conway, J. E., & Diamond, P. J. 2005, A&A 432, 531Google Scholar