Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T11:17:44.267Z Has data issue: false hasContentIssue false

Notes on contact Ricci solitons

Published online by Cambridge University Press:  28 October 2010

Jong Taek Cho
Affiliation:
Department of Mathematics, Chonnam National University, Gwangju 500-757, Korea ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A compact contact Ricci soliton (whose potential vector field is the Reeb vector field) is Sasaki–Einstein. A compact contact homogeneous manifold with a Ricci soliton is Sasaki–Einstein.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2010

References

1.Blair, D. E., Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319324.CrossRefGoogle Scholar
2.Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics (Birkhäuser, 2002).Google Scholar
3.Boyer, C. P. and Galicki, K., Einstein manifolds and contact geometry, Proc. Am. Math. Soc. 129(8) (2001), 24192430.CrossRefGoogle Scholar
4.Cao, H.-D., Geometry of Ricci solitons, Chin. Annals Math. B27 (2006), 121142.CrossRefGoogle Scholar
5.Chern, S. S. and Hamilton, R. S., On Riemannian metrics adapted to three-dimensional contact manifolds, Lecture Notes in Mathematics, Volume 1111, pp. 279305 (Springer, 1985).Google Scholar
6.Cho, J. T., Ricci solitons and odd dimensional spheres, Monatsh. Math. 160 (2010), 347357.CrossRefGoogle Scholar
7.Cho, J. T., Erratum to ‘Ricci solitons and odd dimensional spheres’, Monatsh. Math. 160 (2010), 359360.CrossRefGoogle Scholar
8.Cho, J. T. and Kimura, M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2009), 205212.CrossRefGoogle Scholar
9.Cho, J. T. and Kimura, M., Ricci solitons of compact real hypersurfaces in Kähler manifolds, Math. Nachr. (in press).Google Scholar
10.Chow, B. and Knopf, D., The Ricci flow: an introduction, Mathematical Surveys and Monographs, Voume 110 (American Mathematical Society, Providence, RI, 2004).Google Scholar
11.Hamilton, R. S., The Ricci flow on surfaces, in Mathematics and general relativity, Contemporary Mathematics, Volume 71, pp. 237262 (American Mathematical Society, Providence, RI, 1988).Google Scholar
12.Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Applic. 3 (1993), 301307.CrossRefGoogle Scholar
13.Martinet, J., Forms de contact sur les variétiés de dimension 3, Lecture Notes in Mathematics, Volume 209, pp. 142163 (Springer, 1971).Google Scholar
14.Perelman, G., The entropy formula for the Ricci flow and its geometric applications, eprint (available at http://arXiv.org/abs/math.DG/0211159).Google Scholar
15.Petersen, P. and Wylie, W., On gradient Ricci solitons with symmetry, Proc. Am. Math. Soc. 137 (2009), 20852092.CrossRefGoogle Scholar
16.Tanno, S., Locally symmetric K-contact Riemannian manifolds, Proc. Jpn Acad. 43 (1967), 581583.Google Scholar
17.Tanno, S., Variational problems on contact Riemannian manifolds, Trans. Am. Math. Soc. 314 (1989), 349379.CrossRefGoogle Scholar