No CrossRef data available.
Article contents
Integer Points of Meromorphic Functions
Published online by Cambridge University Press: 21 August 2013
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Working from a half-plane result of Fletcher and Langley, we show that if f is an integer-valued function on some subset of the natural numbers of positive lower density and is meromorphic of sufficiently small exponential type in the plane, then f is a polynomial.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 2014
References
2.Fletcher, A. N., Gaussian integer points of functions analytic in a half-plane, Proc. Camb. Phil. Soc. 145 (2008), 257–272.Google Scholar
3.Fletcher, A. N. and Langley, J. K., Integer points of analytic functions in a half-plane, Proc. Edinb. Math. Soc. 52 (2009), 619–630.Google Scholar
6.Laine, I., Complex analysis 2 (available at www.joensuu.fi/matematiikka/kurssit/complex/).Google Scholar
7.Langley, J. K., Integer points of entire functions, Bull. Lond. Math. Soc. 38 (2006), 239–249.Google Scholar
8.Langley, J. K., Integer-valued analytic functions in a half-plane, Computat. Meth. Funct. Theory 7 (2007), 433–442.Google Scholar
9.Pisot, C., Über ganzwertige ganze Funktionen, Jahresber. Dtsch. Math.-Verein. 52 (1942), 95–102.Google Scholar
10.Pólya, G., Über ganze ganzwertige Funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1–16.CrossRefGoogle Scholar
11.Robinson, R. M., Integer-valued entire functions, Trans. Am. Math. Soc. 153 (1971), 451–468.Google Scholar
12.Selberg, A., Über ganzwertige ganze transzendente Funktionen, Arch. Mat. Natur. 44 (1941), 45–52.Google Scholar
13.Waldschmidt, M., Integer-valued entire functions on Cartesian products, in Number theory in progress, Volume 1, pp. 553–576 (Walter de Gruyter, Berlin, 1999).Google Scholar
14.Yoshino, K., Polya's theorem for non-entire functions, Rend. Circ. Mat. Palermo 3 (1984), 385–395.Google Scholar
You have
Access