No CrossRef data available.
Published online by Cambridge University Press: 03 February 2025
Let $\mathbb{N}$ be the set of all non-negative integers. For any integer r and m, let
$r+m\mathbb{N}=\{r+mk: k\in\mathbb{N}\}$. For
$S\subseteq \mathbb{N}$ and
$n\in \mathbb{N}$, let
$R_{S}(n)$ denote the number of solutions of the equation
$n=s+s'$ with
$s, s'\in S$ and
$s \lt s'$. Let
$r_{1}, r_{2}, m$ be integers with
$0 \lt r_{1} \lt r_{2} \lt m$ and
$2\mid r_{1}$. In this paper, we prove that there exist two sets C and D with
$C\cup D=\mathbb{N}$ and
$C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})$ such that
$R_{C}(n)=R_{D}(n)$ for all
$n\in\mathbb{N}$ if and only if there exists a positive integer l such that
$r_{1}=2^{2l+1}-2, r_{2}=2^{2l+1}-1, m=2^{2l+2}-2$.