Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T00:43:13.276Z Has data issue: false hasContentIssue false

A matrix-based approach to step-wise assess the safety of collaborative robots in manufacturing

Published online by Cambridge University Press:  16 May 2024

Matthias R. Guertler*
Affiliation:
University of Technology Sydney, Australia Australian Cobotics Centre, Australia
Philipp Bauer
Affiliation:
University of Technology Sydney, Australia Australian Cobotics Centre, Australia
Alan Burden
Affiliation:
Queensland University of Technology, Australia Australian Cobotics Centre, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Collaborative robots (cobots) allow for flexible manufacturing, supporting more customised product designs. Although safety is key for socio-technical human-cobot workplaces, existing safety assessment support like standards and guidelines require extensive experience and can be experienced as overwhelming. To make cobot risk assessments more accessible, especially for novices, and increase traceability from hazard to risk to mitigation, this paper presents a matrix-based approach that decomposes this daunting activity into smaller better manageable steps.

Type
Systems Engineering and Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Bauer, W., Bender, M., Braun, M., Rally, P. and Scholtz, O. (2016) Leichtbauroboter in der manuellen Montage – Einfach einfach anfangen: Erste Erfahrungen von Anwenderunternehmen, Fraunhofer IAO, Stuttgart, Germany [Online]. Available at https://www.engineering-produktion.iao.fraunhofer.de/content/dam/iao/tim/Bilder/Projekte/LBR/Studie-Leichtbauroboter-Fraunhofer-IAO-2016.pdf (Accessed 6 November 2023).Google Scholar
Berx, N., Decré, W., Morag, I., Chemweno, P. and Pintelon, L. (2022) ‘Identification and classification of risk factors for human-robot collaboration from a system-wide perspective’, Computers & Industrial Engineering, Vol. 163, p. 107827.CrossRefGoogle Scholar
Corbin, J. M. and Strauss, A. (1990) ‘Grounded theory research: Procedures, canons, and evaluative criteria’, Qualitative Sociology, Vol. 13, No. 1, pp. 321.CrossRefGoogle Scholar
Danilovic, M. and Browning, T. R. (2007) ‘Managing complex product development projects with design structure matrices and domain mapping matrices’, International Journal of Project Management, Vol. 25, No. 3, pp. 300314.CrossRefGoogle Scholar
Djuric, A. M., Urbanic, R. J. and Rickli, J. L. (2016) ‘A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems’, SAE International Journal of Materials and Manufacturing, Vol. 9, No. 2, pp. 457464.CrossRefGoogle Scholar
Du, Y., Wang, J., Wang, Z., Yu, F. and Zheng, C. (2022) ‘Robotic manufacturing systems: A survey on technologies to improve the cognitive level in HRI’, Procedia CIRP, Vol. 107, pp. 14971502.CrossRefGoogle Scholar
EN ISO 10218-1:2011 10218-1: Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots (ISO 10218-1:2011).Google Scholar
EN ISO 12100:2011 12100: Safety of machinery - General principles for design - Risk assessment and risk reduction (ISO 12100:2010).Google Scholar
EN ISO 13849-1:2016 13849-1: Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design (ISO 13849-1:2016).Google Scholar
Eppinger, S. D. (2012) Design structure matrix methods and applications, Cambridge, Mass., MIT Press.CrossRefGoogle Scholar
European Commission (2018) Cobots (collaborative robots).Google Scholar
Fairchild, M. (2021) Top 12 Industrial Robot Applications and Uses [Online], HowToRobot. Available at https://howtorobot.com/expert-insight/industrial-robot-applications (Accessed 6 November 2023).Google Scholar
Guertler, M. R., Carmichael, M. G., Paul, G., Sick, N., Tomidei, L., Hernandez Moreno, V., Wambsganss, A., Amin, M., Cockburn, J., Frijat, L. and Hussain, S. (2022) Guidelines for the Safe Collaborative Robot Design and Implementation, NSW Government: Centre for Work Health and Safety [Online]. Available at www.centreforwhs.nsw.gov.au/tools/guidelines-for-safe-collaborative-robot-design-and-implementation (Accessed 31 October 2023).Google Scholar
Guertler, M. R., Tomidei, L., Sick, N., Carmichael, M. G., Paul, G., Wambsganss, A., Hernandez Moreno, V. and Hussain, S. (2023) ‘When is a robot a cobot? Moving beyond manufacturing and arm-based cobot manipulators’, Proceedings of the Design Society, Vol. 3, pp. 38893898.CrossRefGoogle Scholar
Guiochet, J., Machin, M. and Waeselynck, H. (2017) ‘Safety-critical advanced robots: A survey’, Robotics and Autonomous Systems, Vol. 94, pp. 4352.CrossRefGoogle Scholar
Haddadin, S. and Croft, E. (2016) ‘Physical Human–Robot Interaction’, in Siciliano, B. and Khatib, O. (eds) Springer Handbook of Robotics, Cham, Springer International Publishing, pp. 18351874.CrossRefGoogle Scholar
Härdtlein, C. (2021) Leitfaden für den ortsflexiblen Einsatz von Leichtbaurobotern: Praxisnah. Anwenderfreundlich. Prägnant [Online], Fraunhofer-Gesellschaft. Available at https://doi.org/10.24406/igcv-n-635224 (Accessed 6 November 2023).CrossRefGoogle Scholar
ISO 10218-2:2011: Robots and robotic devices - Safety requirements for industrial robots - Part 2: Robot systems and integration.Google Scholar
ISO 31000:2018 31000: Risk Management - Principles and guidelines (ISO 31000:2018).Google Scholar
ISO/TS 15066:2016 15066:2016: Robots and robotic devices - Collaborative robots (ISO/TS 15066:2016).Google Scholar
Kopp, T., Baumgartner, M. and Kinkel, S. (2021) ‘Success factors for introducing industrial human-robot interaction in practice: an empirically driven framework’, The International Journal of Advanced Manufacturing Technology, Vol. 112, 3-4, pp. 685704.CrossRefGoogle Scholar
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T. and Hoffmann, M. (2014) ‘Industry 4.0’, Business & Information Systems Engineering, Vol. 6, No. 4, pp. 239242.CrossRefGoogle Scholar
Levy, Y. and Ellis, T. (2006) ‘A Systems Approach to Conduct an Effective Literature Review in Support of Information Systems Research’, Informing Science: The International Journal of an Emerging Transdiscipline, Vol. 9, pp. 181212.CrossRefGoogle Scholar
Lindemann, U., Maurer, M. and Braun, T. (2009) Structural Complexity Management, Berlin, Heidelberg, Springer.CrossRefGoogle Scholar
Liu, L., Guo, F., Zou, Z. and Duffy, V. G. (2022) ‘Application, Development and Future Opportunities of Collaborative Robots (Cobots) in Manufacturing: A Literature Review’, International Journal of Human–Computer Interaction, pp. 118.Google Scholar
Martín-Martín, A., Orduna-Malea, E., Thelwall, M. and Delgado López-Cózar, E. (2018) ‘Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories’, Journal of Informetrics, Vol. 12, No. 4, pp. 11601177.CrossRefGoogle Scholar
Matheson, E., Minto, R., Zampieri, E. G. G., Faccio, M. and Rosati, G. (2019) ‘Human–Robot Collaboration in Manufacturing Applications: A Review’, Robotics, Vol. 8, No. 4, p. 100.CrossRefGoogle Scholar
McGirr, L., Jin, Y., Price, M., West, A., van Lopik, K. and McKenna, V. (2022) ‘Human Robot Collaboration: Taxonomy of Interaction Levels in Manufacturing’, 54th International Symposium on Robotics: (ISR Europe 2022) : 20-21 June 2022, Munich, Germany. Berlin, Offenbach, VDE VERLAG, pp. 18.Google Scholar
Stamatis, D. H. (2003) Failure mode and effect analysis: FMEA from theory to execution, 2nd edn, Milwaukee, Wisc., ASQ Quality Press.Google Scholar
Thomas, C., Matthias, B. and Kuhlenkoetter, B. (2016) ‘Human-Robot Collaboration – New Applications in Industrial Robotics’, International Conference on Competitive Manufacturing COMA'16. Stellenbosch, South Africa, 27.-29.01.2016, pp. 16.Google Scholar
Tomidei, L., Sick, N., Guertler, M. R., Frijat, L., Carmichael, M. G. and Paul, G. (2022) ‘Beyond technology - The cognitive and organisational impacts of cobots’, Australasian Conference on Robotics and Automation - ACRA. Brisbane, Australia, 06-07.12.2022, pp. 19.Google Scholar
Universal Robots (2022) Collaborative Robots Applications [Online], Universal Robots. Available at https://www.universal-robots.com/applications/ (Accessed 6 November 2023).Google Scholar
Weber, W. (ed) (2017) Industrieroboter, München, Carl Hanser Verlag GmbH & Co. KG.Google Scholar