Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T23:06:29.675Z Has data issue: false hasContentIssue false

Exploratory Analysis of Adaptively Morphing Handle Forms for Load Transfer Use Cases

Published online by Cambridge University Press:  26 May 2022

J. M. Kiessling*
Affiliation:
University of Stuttgart, Germany
K. Hilbig
Affiliation:
Technische Universität Braunschweig, Germany
J. Dinkel
Affiliation:
University of Stuttgart, Germany
M. Schmid
Affiliation:
University of Stuttgart, Germany
T. Maier
Affiliation:
University of Stuttgart, Germany
T. Vietor
Affiliation:
Technische Universität Braunschweig, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Through optimal design of the human machine interfaces, especially the hand-handle contact surface, high usability of hand-operated products can be achieved. The complexity of the user specific hand anthropometry has to be considered in the design of load transfer handles. Use case optimized, personalized, and adaptively morphing handles aim at fulfilling this requirement. To identify design parameters for adaptive handles an experimental design for systematic analysis of user and use case requirements is proposed and evaluated showing the potential of adaptive handles.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

An, K. N., Chao, E. Y., Cooney, W. P., Linscheid, R. L. (1979), “Normative model of human hand for biomechanical analysis”, Journal of Biomechanics, Vol. 12, Issue 10, pp. 775788, 10.1016/0021-9290(79)90163-5Google ScholarPubMed
Buchholz, B., Armstrong, T. J. (1991), “An ellipsoidal representation of human hand anthropometry”, Human factors, Vol.33 No. 4, pp. 429441, 10.1177/001872089103300405Google ScholarPubMed
Bullinger, H.-J. (Ed.) (1994), Ergonomie: Produkt-und Arbeitsplatzgestaltung, Vieweg+Teubner Verlag, Stuttgart. 10.1007/978-3-663-12094-0CrossRefGoogle Scholar
Cobos, S.; Ferre, M.; Sanchez Uran, M. A.; Ortego, J.; Pena, C. (2008), “Efficient human hand kinematics for manipulation tasks”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 22462251 10.1109/IROS.2008.4651053Google Scholar
DIN EN ISO 9241-11:2018-11, Ergonomics of human-system interaction - Part 11: Usability: Definitions and concepts (ISO 9241-11:2018)Google Scholar
DIN 33402-2:2020-12, Ergonomics - Human body dimensions - Part 2: ValuesGoogle Scholar
Eichinger, P. (2020), Entwicklung einer Prozesskette zur automatisierten Produktherstellung von personalisierten Computermäusen, [Master Thesis], Universität Stuttgart, 2020.Google Scholar
Eksioglu, M. (2004), “Relative optimum grip span as a function of hand anthropometry”, International Journal of Industrial Ergonomics, Vol. 34 No. 1, pp. 180201. , 10.1016/j.ergon.2004.01.007Google Scholar
Follmer, S., Leithinger, D., Olwal, A., Cheng, N. and Ishii, H. (2012), “Jamming user interfaces”, In: Miller, R. (Ed.), Proceedings of the 25th annual ACM symposium on User interface software and technology, Cambridge, Massachusetts, USA, ACM, New York, NY, p. 519526, 10.1145/2380116.2380181Google Scholar
Garrett, J. W. (1971), “The adult human hand: some anthropometric and biomechanical considerations”, Human factors, Vol. 13,2, pp. 117131, 10.1177/001872087101300204Google ScholarPubMed
Janny, B. (2018), Entwicklung von gestaltvariablen Bedienelementen zur Überwindung von Nutzungsbarrieren am Beispiel alternsgerechter Drehstellteile, [Dissertation], Universität Stuttgart, 2018. 10.18419/opus-10079Google Scholar
Lassmann, P., Kiessling, J., Mayer, S., Janny, B. and Maier, T. (2019), “aHa – Der adaptive Handgriff der Zukunft”, in Stelzer, R.H. and Krzywinski, J. (Eds.), Entwerfen Entwickeln Erleben in Produktentwicklung und Design 2019: Band 1, Technisches Design, TUDpress, Dresden, 107123.Google Scholar
Liu, X.; Zhan, Q. (2013), “Description of the human hand grasp using graph theory”, Medical Engineering & Physics, Vol. 35, Issue 7, pp. 10201027, 10.1016/j.medengphy.2012.10.005Google ScholarPubMed
Maier, T. (2008), “Haptic design of handles”, in Grunwald, M. (Ed.), Human haptic perception: Basics and applications, Birkhäuser, Basel, Boston, pp. 459466. 10.1007/978-3-7643-7612-3_38CrossRefGoogle Scholar
Rogers, M. S.; Barr, A. B.; Kasemsontitum, Boontariga; Rempel, David M. (2008), “A three-dimensional anthropometric solid model of the hand based on landmark”, Ergonomics, Vol. 51, pp. 511526, 10.1080/00140130701710994Google ScholarPubMed
Schmid, M. and Maier, T. (2017), “Technisches Interface Design”, Springer, Berlin, Heidelberg. 10.1007/978-3-662-54948-3Google Scholar
Seeger, H. (2005), Design technischer Produkte, Produktprogramme und -systeme: Industrial Design Engineering, Springer, Berlin, Heidelberg. 10.1007/3-540-28866-XGoogle Scholar
Stillfried, G.; van der Smagt, P.; Kasemsontitum, B.; Rempel, D. M. (2010), “Movement model of a human hand based on magnetic resonance imaging (MRI)”, 1st International Conference on Applied Bionics and Biomechanics (ICABB) 2010, Venice, Italy, IEEE, New York, Vol. 4, pp. 511526.Google Scholar
Wang, X. (1999), “Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements”, Biological cybernetics, Vol. 80, pp. 449463. DOI: 10.1007/s004220050538Google ScholarPubMed
Watschke, H. (2019), Methodisches Konstruieren für Multi-Material-Bauweisen hergestellt mittels Materialextrusion, [Dissertation], Technische Universität Braunschweig. 10.24355/dbbs.084-202004201049-0Google Scholar
Wei, Y.; Zou, Z.; Wei, G.; Ren, L.; Qian, Z. (2020), “Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation”, Annals of Biomedical Engineering, Vol. 48, pp. 11811195, 10.1007/s10439-019-02439-2CrossRefGoogle ScholarPubMed
Yang, J., Pitarch, E. P, Kim, J., Abdel-Malek, K. (2006), “Posture Prediction and Force/Torque Analysis for Human Hands”, SAE Technical Paper Series, 10.4271/2006-01-2326Google Scholar
You, H., Kumar, A., Young, R., Veluswamy, P. and Malzahn, D.E. (2005), “An ergonomic evaluation of manual Cleco plier designs: effects of rubber grip, spring recoil, and worksurface angle”, Applied Ergonomics, Vol. 36 No. 5, pp. 575583. 10.1016/j.apergo.2005.01.014Google ScholarPubMed