Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T05:47:03.323Z Has data issue: false hasContentIssue false

BARRIERS AND DRIVERS FOR AN EFFICIENT INTEGRATION OF ECO-DESIGN OF COMPLEX SYSTEMS: A CASE STUDY IN THE FRENCH MILITARY INDUSTRY

Published online by Cambridge University Press:  19 June 2023

Elise Dupont*
Affiliation:
Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
François Cluzel
Affiliation:
Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
Bernard Yannou
Affiliation:
Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
*
Dupont, Elise, CentraleSupélec, France, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The defense industry tends to anticipate environmental issues through eco-design integration in the overall design process. This leads to focus on the impact of technological and design choices of complex systems while maximizing operational performance. Such development involves long and complex processes and is constrained in a project owner and industrial project manager context. In this context poorly described in the literature, the objective of this paper is to identify barriers and drivers to achieve an efficient application of eco-design. A comprehensive analysis of the interactions and the current design processes is performed in the context of the French defense industry. Through internal documentation and semi-structured interviews with the key actors, the generic design process of a project owner is analysed (including relationships with industrial project manager). The failure modes that currently limit the integration of eco-design in projects are also identified.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Ahn, Y. P., Pearce, A. R., Wang, Y. and Wang, G. (2013), “Drivers and barriers of sustainable design and construction: The perception of green building experience”, International Journal of Sustainable Building Technology and Urban Development, Vol. 4 No. 1, pp. 3545. http://doi.org/10.1080/2093761X.2012.759887CrossRefGoogle Scholar
Bey, N., Hauschild, M. Z. and McAloone, T. C. (2013), “Drivers and barriers for implementation of environmental strategies in manufacturing companies”, Manufacturing Technology, Vol. 62, pp. 4346. 10.1016/j.cirp.2013.03.001Google Scholar
Bossle, M. B., de Barcellos, M. D., Vieira, L. M. and Sauvée, L. (2016), “The drivers for adoption of eco-innovation”, Journal of Cleaner Production, Vol. 113, pp. 861872. http://doi.org/10.1016/j.jclepro.2015.11.033CrossRefGoogle Scholar
EEAS (2021), EU Concept for Environmental Protection and Energy Optimisation for EU-led Military Operations and Missions, Council of the European Union, Brussels.Google Scholar
Gaziulusoy, A. I. and Brezet, H. (2015), “Design for system innovations and transitions: a conceptual framework integrating insights from sustainablity science and theories of system innovations and transitions”, Journal of Cleaner Production, Vol. 108, pp. 558568. http://doi.org/10.1016/j.jclepro.2015.06.066CrossRefGoogle Scholar
French, M. J. (1985), Conceptual design for engineers, Springger-Verlag, London, http://doi.org/10.1007/978-3-662-11364-6CrossRefGoogle Scholar
Gürel, E. (2017), “SWOT analysis: a theorical review”, The Journal of International Social Research, Vol. 10, pp. 9941006, http://doi.org/10.17719/jisr.2017.1832CrossRefGoogle Scholar
Hiatt, J., Creasey, T.J. (2012), Change management: the people side of change, Proscri Learning center Publications, Colorado (USA).Google Scholar
Hollauer, C., Venkataraman, S. and Omer, M. (2015), “A model to describe use phase of socio-technical sphere of product-service systems”, International Conference on Engineering Design ICED15, Politecnico di Milano, Italy, July 2015.Google Scholar
IRIS (2021a), Rapport d'étude n°15 - Intégration des enjeux climato-environnementaux par les forces armées, IRIS - Institut de relations internationales et stratégiques.Google Scholar
IRIS (2021b), Rapport d'étude n°16 - CEMC: Climate Change Evaluation Methodology for military Camps, IRIS - Institut de relations internationales et stratégiques.Google Scholar
ISO (2002), ISO/TR 14062:2002: Environmental management - Integrating environmental aspects into product design and development.Google Scholar
Liao, Z., Xu, C-k, Cheng, H and Dong, J. (2018), “What drives environmental innovation? A content analysis of listed companies in China”, Journal of Cleaner Production, Vol. 198, pp. 15671573. http://doi.org/10.1016/j.jclepro.2018.07.156CrossRefGoogle Scholar
Maisonneuve, C. (2022), “Chapitre 13. Opérations d'armement : De l’éco-conception à l'adaptation au changement climatique”, In: Regaud, N. (Presses de Sciences Po), La guerre chaude, pp. 207220. http://doi.org/10.3917/scpo.regau.2022.01.0207CrossRefGoogle Scholar
Michelin, F. and Janin, M. (2018), “Les enjeux de l’éco-conception pour un donneur d'ordre de systèmes complexes”, Congrès AVNIR, Lille, France, November 7 and 8, 2018.Google Scholar
Ministère des armées (2014), Demandes d'autorisation et d'exemption défense. [online] IXARM. Available at: https://www.ixarm.com/fr/demandes-dautorisation-et-dexemption-defense (2022/10/28).Google Scholar
Ministère des armées (2019), Instruction n° 1618/ARM/CAB. Bulletin officiel des armées, France.Google Scholar
Ministère des armées (2022), Climate and defense strategy, France.Google Scholar
Mrozek, A. (2021), “Eco-Design and its Tools - Attempted use in the Military Industry”, Architecture, Civil Engineering, Environment, Vol. 14, pp 8188. http://doi.org/10.21307/acee-2021-024CrossRefGoogle Scholar
NATO (2021), NATO Climate Change and Security Action Plan. [online] NATO - North Atlantic Treaty Organization. Available at: https://www.nato.int/cps/en/natohq/official_texts_185174.htm (accessed 2022/11/26).Google Scholar
Regaud, N. (2021), Changement climatique, défense et sécurité : nouvelle dynamique internationale et enjeux pour la France (Brève stratégique n°21), IRSEM - Institut de Recherche Stratégique de l'Ecole Militaire, France.Google Scholar
Saidani, M., Cluzel, F., Leroy, Y. and Auclaire, A. (2016), “Time-Efficient Eco-Innovation Workshop Process in Complex System Industries”, Design 2016, Dubrovnik, Croatia, May 2016. http://doi.org/10.1007/978-1-4471-3581-4CrossRefGoogle Scholar
Sarewitz, D., Thernstrom, S., Alic, J. and Doom, T. (2012), Energy innovation at the department of defence assessing the opportunities, Consortium for Science, Policy & Outcomes, Clean Air Task Force.Google Scholar
Departement of Defence (2019), Smart Infrastructure Handbook, Australia.Google Scholar
Van Schaik, L., Zandee, D., von Lossow, T., Dekker, B., van der Maas, Z. and Halima, A. (2020), Military responses to climate change, Clingendael.Google Scholar
Yannou, B. and Petiot, J-F (2011), “A View of Design (and JMD): The French Perspective”, Journal of Mechanical design, Vol. 133 No. 5, pp.12. http://doi.org/10.1115/1.4004032CrossRefGoogle Scholar