Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T16:08:44.377Z Has data issue: false hasContentIssue false

COMPETENCES FOR THE DEVELOPMENT OF ECODESIGN PRODUCTS

Published online by Cambridge University Press:  11 June 2020

D. Kattwinkel*
Affiliation:
Ruhr-Universität Bochum, Germany
B. Bender
Affiliation:
Ruhr-Universität Bochum, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To respond to today's needs, engineers must be able to develop sustainable and environmentally compatible products and systems. To do so, they have to carry out new or changed activities and tasks within the product development process and therefore have to obtain new or changed competences. This publication examines which specific competences from the competence groups system thinking and communication are especially important for the development of Ecodesign products apart from technical know-how and should thus be included in a future higher education engineering course.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Albers, A., Burkardt, N. and Becke, C. (2012a), “KaLeP: Karlsruher Lehrmodell für Produktentwicklung. Ein Ansatz zur Kompetenzerfassung in der Ingenieurausbildung”, In: Pfadenhauer, M. and Kunz, A.M. (Eds.), Kompetenzen in der Kompetenzerfassung: Ansätze und Auswirkungen der Vermessung von Bildung, Beltz Juventa, Weinheim, pp. 7586.Google Scholar
Albers, A., Denkena, B. and Matthiesen, S. (2012b), Faszination Konstruktion: Berufsbild und Tätigkeitsfeld im Wandel, arcatech STUDIE.CrossRefGoogle Scholar
Anderson, L.W. and Krathwohl, D.R. (2001), A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives, Abridged, ed., [Nachdr.], Longman, New York.Google Scholar
Arbeitskreis Deutscher Qualifikationsrahmen (AK DQR) (2011), Deutscher Qualifikationsrahmen für lebenslanges Lernen, (accessed 11 June 2019).Google Scholar
Beitz, W. and Helbig, D. (1997), Neue Wege zur Produktentwicklung: Berufsfähigkeit und Weiterbildung, [Abschlußbericht des Arbeitskreises, Schriftenreihe Konstruktionstechnik], Vol. 37, TU Univ.-Bibliothek Abt. Publ, Berlin.Google Scholar
Bennauer, U. (1994), Ökologieorientierte Produktentwicklung: Eine strategisch-technologische Betrachtung der betriebswirtschaftlichen Rahmenbedingungen, Umwelt und Ökonomie, Vol. 9, Physica-Verlag HD, Heidelberg.10.1007/978-3-642-46951-0CrossRefGoogle Scholar
Binz, H. (2014), “Universitäre Lehre in der Produktentwicklung. Leitfaden der Wissenschaftlichen Gesellschaft für Produktentwicklung”, Konstruktion, No. 6, pp. 7479.Google Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a design research methodology, Springer, Dordrecht, New York.CrossRefGoogle Scholar
Breiing, A. and Knosala, R. (1997), Bewerten technischer Systeme: Theoretische und methodische Grundlagen bewertungstechnischer Entscheidungshilfen, Springer, Berlin.CrossRefGoogle Scholar
Charter, M. and Tischner, U. (2001), Sustainable solutions: Developing products and services for the future, Greenleaf Pub., Sheffield, U.K.Google Scholar
Crawley, E.F. (2001), The CDIO Syllabus: A Statement of Goals for Undergraduate Engineering Education.Google Scholar
Crawley, E.F. et al. (2011), “The CDIO Syllabus v2.0. An Updated Statement of Goals for Engineering Education”, Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20-23.Google Scholar
Crofton, F.S. (2000), “Educating for sustainability: opportunities in undergraduate engineering”, Journal of Cleaner Production, Vol. 8 No. 5, pp. 397405. https://doi.org/10.1016/S0959-6526(00)00043-3CrossRefGoogle Scholar
DIN (2011), Umweltmanagementsysteme - Leitlinien zur Berücksichtigung umweltverträglicher Produktgestaltung, Vol. 13.020.10 No. DIN EN ISO 14006:2011-10.Google Scholar
Duden (2019), Kommunikation, available at: https://www.duden.de/rechtschreibung/Kommunikation (accessed 11 November 2019).Google Scholar
Enke, J., Kraft, K. and Metternich, J. (2015), “Competency-oriented Design of Learning Modules”, paper presented at Conference on Learning Factories, pp. 78, Juli, Bochum (accessed 28 July 2015) https://doi.org/10.1016/j.procir.2015.02.211CrossRefGoogle Scholar
Ernst, J. et al. (2013), Humanfaktoren in der Produktentwicklung: Kurzbericht, Kaiserslautern.Google Scholar
Erpenbeck, J. and Rosenstiel, L.V. (2011), Handbuch Kompetenzmessung: Erkennen, verstehen und bewerten von Kompetenzen in der betrieblichen, pädagogischen und psychologischen Praxis, 2nd ed, Schäffer-Poeschel Verlag für Wirtschaft Steuern Recht, Stuttgart.Google Scholar
Frisk, E. and Larson, K.L. (2011), “Educating for Sustainability: Competencies & Practices for Transformative Action”, Journal of Sustainability Education, Vol. 2Google Scholar
Gessler, M. and Sebe-Opfermann, A. (2016), “Kompetenzmodelle”, In: Müller-Vorbrüggen, M. and Radel, J. (Eds.), Handbuch Personalentwicklung: Die Praxis der Personalbildung, Personalförderung und Arbeitsstrukturierung, 4., überarbeitete und erweiterte Auflage, Schäffer Poeschel, Stuttgart.Google Scholar
Graulich, K. et al. (2017), “Ökologisches Design als Qualitätskriterium in Unternehmen stärken. Endbericht”, Umweltbundesamt, No. 35.Google Scholar
Herzog, M. and Bender, B. (2018), “Competencies for the development of smart products”, In: Maier, A., Kim, H., Oehmen, J., Salustri, F., Škec, S. and Kokkolaras, M. (Eds.), Design education, Curran Associates Inc, Red Hook, NY, pp. 285294.Google Scholar
Heyse, V. and Erpenbeck, J. (2010), Kompetenztraining: Informations- und Trainingsprogramme, 2., überarb. u. erw. Aufl, Schäffer-Poeschel, Stuttgart.Google Scholar
Esslingen, H. (2017), Modulhandbuch: Masterstudiengang Ressourceneffizienz im Maschinenbau, available at: http://www.hs-esslingen.de/fileadmin/medien/fakultaeten/mb/Modulhandbuch_RMM_2017_05.pdf (accessed 22 November 2017).Google Scholar
Hubka, V. (1976), Theorie der Konstruktionsprozesse: Analyse der Konstruktionstätigkeit, Hochschultext, Springer, Berlin, Heidelberg.10.1007/978-3-642-81035-0CrossRefGoogle Scholar
Johansson, G. (2002), “Success factors for integration of ecodesign in product development”, Environmental Management and Health, Vol. 13 No. 1, pp. 98107. https://doi.org/10.1108/09566160210417868CrossRefGoogle Scholar
Jungmann, T., Ossenberg, P. and Wissemann, S. (2016), “Begriffsklärung zur Kompetenzorientierung”, In: Frerich, S., Meisen, T., Richert, A., Petermann, M., Jeschke, S., Wilkesmann, U. and Tekkaya, A.E. (Eds.), Engineering Education 4.0, Springer International Publishing, Cham, pp. 863868. https://doi.org/10.1007/978-3-319-46916-4_70CrossRefGoogle Scholar
Kattwinkel, D., Song, Y.-W. and Bender, B. (2018), “Analysis of Ecodesign and Sustainable Design in Higher Education”, In Proceedings of the DESIGN 2018, 15th International Design Conference: 15th International Design Conference (DESIGN 2018), Dubrovnik, pp. 24512460. https://doi.org/10.21278/idc.2018.0305CrossRefGoogle Scholar
Lambrechts, W. et al. (2019), “The role of individual sustainability competences in eco-design building projects”, Journal of Cleaner Production, Vol. 208, pp. 16311641. https://doi.org/10.1016/j.jclepro.2018.10.084CrossRefGoogle Scholar
Lans, T., Blok, V. and Wesselink, R. (2014), “Learning apart and together: towards an integrated competence framework for sustainable entrepreneurship in higher education”, Journal of Cleaner Production, Vol. 62, pp. 3747. https://doi.org/10.1016/j.jclepro.2013.03.036CrossRefGoogle Scholar
Lienert, A.M. and Schiffer, B. (2013), “Where to gain future competencies for Industrial Product-Service Systems (IPS²)?”, 41st SEFI Conference 16-20 September 2013, Leuven, Belgium.Google Scholar
Modrow-Thiel, B. et al. (2010), “Arbeitsintegrierter Kompetenzaufbau”, In: Aurich, J.C. and Clement, M.H. (Eds.), Produkt-Service Systeme, Vol. 1, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 117162. https://doi.org/10.1007/978-3-642-01407-9_7CrossRefGoogle Scholar
Mudra, P. (2004), Personalentwicklung: Integrative Gestaltung betrieblicher Lern- und Veränderungsprozesse, Vahlen, München.10.15358/9783800650668CrossRefGoogle Scholar
Oberender, C. (2006), Die Nutzungsphase und ihre Bedeutung für die Entwicklung umweltgerechter Produkte, Fortschritt-Berichte VDI, Reihe 1, Konstruktionstechnik/Maschinenelemente, nr. 385, VDI Verlag, Düsseldorf.Google Scholar
Olsen, S.I. et al. (2015), “Teaching sustainable solutions in engineering”, In IJISD, Vol. 9 No. 2, pp. 157. https://doi.org/10.1504/IJISD.2015.068788CrossRefGoogle Scholar
O'Rafferty, S., Curtis, H. and O'Connor, F. (2014), “Mainstreaming sustainability in design education - a capacity building framework”, International Journal of Sustainability in Higher Education, Vol. 15 No. 2, pp. 169187. https://doi.org/10.1108/IJSHE-05-2012-0044CrossRefGoogle Scholar
Palma, M., Ríos, I.d.l. and Miñán, E. (2011), “Generic competences in engineering field: a comparative study between Latin America and European Union”, Procedia - Social and Behavioral Sciences, Vol. 15, pp. 576585. https://doi.org/10.1016/j.sbspro.2011.03.144CrossRefGoogle Scholar
Palmberg, I. et al. (2017), “Systems Thinking for Understanding Sustainability? Nordic Student Teachers’ Views on the Relationship between Species Identification, Biodiversity and Sustainable Development”, Education Sciences, Vol. 7 No. 3, pp. 72. https://doi.org/10.3390/educsci7030072CrossRefGoogle Scholar
Ploum, L. et al. (2018), “Toward a Validated Competence Framework for Sustainable Entrepreneurship”, Organization & environment, Vol. 31 No. 2, pp. 113132. https://doi.org/10.1177/1086026617697039CrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2008), Konzeptentwicklung und Gestaltung technischer Produkte, Springer, Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Preißler, I. et al. (2010), “Hochschuldidaktik trifft Ingenieursausbildung: Segen oder Fluch?”, Didaktik der Physik.Google Scholar
Rieckmann, M. (2012), “Future-oriented higher education: Which key competencies should be fostered through university teaching and learning?”, Futures, Vol. 44 No. 2, pp. 127135. https://doi.org/10.1016/j.futures.2011.09.005CrossRefGoogle Scholar
Riel, A., Tichkiewitch, S. and Messnarz, R. (2010), “Qualification and certification for the competitive edge in Integrated Design”, CIRP Journal of Manufacturing Science and Technology, Vol. 2 No. 4, pp. 279289. https://doi.org/10.1016/j.cirpj.2010.04.005CrossRefGoogle Scholar
Ries, G. (2001), Umweltkompetenzen und Wissensmanagement für eine proaktive Produktentwicklung: Konzepte und Fallstudie in einem Grossunternehmen im Bausektor, Wirtschaft, Energie, Umwelt, Vdf, Hochsch.-Verl. an der ETH [u.a.], Zürich [u.a.].Google Scholar
Rossi, M., Germani, M. and Zamagni, A. (2016), “Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies”, Journal of Cleaner Production, Vol. 129, pp. 361373. https://doi.org/10.1016/j.jclepro.2016.04.051CrossRefGoogle Scholar
Roth, H. (1971), “Pädagogische Anthropologie”, In: Roth, H. (Ed.), Entwicklung und Erziehung: Grundlagen einer Entwicklungspädagogik, Vol. 2, 1st ed., Hannover.Google Scholar
Verhulst, E. and van Doorsselaer, K. (2015), “Development of a hands-on toolkit to support integration of ecodesign in engineering programmes”, Journal of Cleaner Production, Vol. 108, pp. 772783. https://doi.org/10.1016/j.jclepro.2015.06.083CrossRefGoogle Scholar
Weinert, F.E. (2002), Leistungsmessungen in Schulen, Beltz Pädagogik, 2., unveränd, Aufl., Dr. nach Typoskript, Beltz, Weinheim.Google Scholar
Wesselink, R. et al. (2015), “Individual competencies for managers engaged in corporate sustainable management practices”, Journal of Cleaner Production, Vol. 106, pp. 497506. https://doi.org/10.1016/j.jclepro.2014.10.093CrossRefGoogle Scholar
Wiek, A. et al. (2015), “Operationalising competencies in higher education for sustainable development”, In: Barth, M., Michelsen, G., Rieckmann, M. and Thomas, I. (Eds.), Handbook of Higher Education for Sustainable Development, Routledge, London, pp. 241260.Google Scholar
Wiek, A., Withycombe, L. and Redman, C.L. (2011), “Key competencies in sustainability: a reference framework for academic program development”, Sustainability Science, Vol. 6 No. 2, pp. 203218. https://doi.org/10.1007/s11625-011-0132-6CrossRefGoogle Scholar
Wilkens, U. et al. (2017), “Personal, Führung und Organisation in IPSS”, In: Meier, H. and Uhlmann, E. (Eds.), Industrielle Produkt-Service Systeme, Vol. 20, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 325342. https://doi.org/10.1007/978-3-662-48018-2_14CrossRefGoogle Scholar