Published online by Cambridge University Press: 27 July 2009
We consider a hierarchical linear regression model where the regression parameters for the units have a multivariate normal distribution whose parameters are unknown. Several replications are available for each unit. The design matrices for the units need not be the same. A complicating feature of the model is that each observation is subject to measurement error. The objective of the paper is to derive the predictive distribution of the “true” value of the response at a given design point. A Bayesian treatment is given to the problem. In addition to standard prior distributions, other prior distributions are considered. The calculations are done with the Gibbs sampler. An example is discussed in detail.