Published online by Cambridge University Press: 18 May 2016
We study layered queueing systems comprised two interlacing finite M/M/• type queues, where users of each layer are the servers of the other layer. Examples can be found in file sharing programs, SETI@home project, etc. Let Li denote the number of users in layer i, i=1, 2. We consider the following operating modes: (i) All users present in layer i join forces together to form a single server for the users in layer j (j≠i), with overall service rate μjLi (that changes dynamically as a function of the state of layer i). (ii) Each of the users present in layer i individually acts as a server for the users in layer j, with service rate μj.
These operating modes lead to three different models which we analyze by formulating them as finite level-dependent quasi birth-and-death processes. We derive a procedure based on Matrix Analytic methods to derive the steady state probabilities of the two dimensional system state. Numerical examples, including mean queue sizes, mean waiting times, covariances, and loss probabilities, are presented. The models are compared and their differences are discussed.