Published online by Cambridge University Press: 27 July 2009
We study the problem of broadcasting in a system where nodes are equipped with radio transmitters with constant radius of transmission. A message originating at a node has to be transmitted to all the other nodes in the system. We prove the central limit theorem and the law of large numbers for the number of time steps required to complete a broadcast for the case when the nodes are placed on a line independently uniformly distributed. We show that the number of time steps required to broadcast is 3n/4 in probability.