Article contents
Use of a Novel, Portable, LED-Based Capillary Refill Time Simulator within a Disaster Triage Context
Published online by Cambridge University Press: 27 March 2017
Abstract
A simple, portable capillary refill time (CRT) simulator is not commercially available. This device would be useful in mass-casualty simulations with multiple volunteers or mannequins depicting a variety of clinical findings and CRTs. The objective of this study was to develop and evaluate a prototype CRT simulator in a disaster simulation context.
A CRT prototype simulator was developed by embedding a pressure-sensitive piezo crystal, and a single red light-emitting diode (LED) light was embedded, within a flesh-toned resin. The LED light was programmed to turn white proportionate to the pressure applied, and gradually to return to red on release. The time to color return was adjustable with an external dial. The prototype was tested for feasibility among two cohorts: emergency medicine physicians in a tabletop exercise and second year medical students within an actual disaster triage drill. The realism of the simulator was compared to video-based CRT, and participants used a Visual Analog Scale (VAS) ranging from “completely artificial” to “as if on a real patient.” The VAS evaluated both the visual realism and the functional (eg, tactile) realism. Accuracy of CRT was evaluated only by the physician cohort. Data were analyzed using parametric and non-parametric statistics, and mean Cohen’s Kappas were used to describe inter-rater reliability.
The CRT simulator was generally well received by the participants. The simulator was perceived to have slightly higher functional realism (P=.06, P=.01) but lower visual realism (P=.002, P=.11) than the video-based CRT. Emergency medicine physicians had higher accuracy on portrayed CRT on the simulator than the videos (92.6% versus 71.1%; P<.001). Inter-rater reliability was higher for the simulator (0.78 versus 0.27; P<.001).
A simple, LED-based CRT simulator was well received in both settings. Prior to widespread use for disaster triage training, validation on participants’ ability to accurately triage disaster victims using CRT simulators and video-based CRT simulations should be performed.
ChangTP, SantillanesG, Claudius I, PhamPK, KovedJ, CheyneJ, Gausche-HillM, KajiAH, SrinivasanS, DonofrioJJ, BirC. Use of a Novel, Portable, LED-Based Capillary Refill Time Simulator within a Disaster Triage Context. Prehosp Disaster Med. 2017;32(4):451–456.
- Type
- Special Reports
- Information
- Copyright
- © World Association for Disaster and Emergency Medicine 2017
Footnotes
Conflicts of interest/funding: Research reported in this publication was partially supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (Bethesda, Maryland USA) under Award Number UL1TR000130 (formerly by the National Center for Research Resources, Award Number UL1RR031986). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This research was presented at the International Meeting on Simulation in Healthcare, 2015 (New Orleans, Louisiana USA).
References
- 5
- Cited by