Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T21:29:43.941Z Has data issue: false hasContentIssue false

XRD total pattern fitting applied to study of microstructure of TiO2 films

Published online by Cambridge University Press:  29 February 2012

Z. Matěj
Affiliation:
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
R. Kužel*
Affiliation:
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
L. Nichtová
Affiliation:
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

New XRD total pattern fitting software MSTRUCT was used to study the microstructure of magnetron-deposited TiO2 thin films. MSTRUCT is an extension of the FOX program for structure determination from powder diffraction data. MSTRUCT makes corrections for refraction and absorption, residual stress, and preferred orientation that are necessary for thin-film analysis using the parallel-beam geometry and an asymmetric detector scan with small angles of incidence. The program also corrects for crystallite size broadening in terms of log-normal distribution, two models of strain (phenomenological and dislocation models), as well as the influence of stacking faults in the most common cubic and hexagonal structures. The microstructure results obtained by this study show that during crystallization of the amorphous TiO2 films, tensile stresses were generated resulting in anisotropic shifts of diffraction peaks. This was confirmed by in situ crystallization and direct stress measurements. The consideration of the stress effect in terms of the weighted Reuss-Voigt model improved the fits significantly. The stresses were found to depend systematically on the TiO2 film thickness, and their values determined by total pattern fitting agree well with the values measured directly by XRD stress analysis.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balogh, L., Ribárik, G., and Ungár, T. (2006). “Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis,” J. Appl. Phys. JAPIAU 100, 023512.10.1063/1.2216195CrossRefGoogle Scholar
Baroch, P., Musil, J., Vlcek, J., Nam, K. H., and Han, J. G. (2005). “Reactive magnetron sputtering of TiOx films,” Surf. Coat. Technol. SCTEEJ 193, 107111.10.1016/j.surfcoat.2004.07.060CrossRefGoogle Scholar
Behnken, H. and Hauk, V. (1986). “Berechnung der rontgenographishen elastizitatskonstabten (REK) des vielkristalls aus den einkristalldaten fur beliebige kristallsymmetrie,” Z. Metallkd. ZEMTAE 77, 620626.Google Scholar
Byun, I., Jin, Y., Kim, B., Lee, J. K., and Park, D. (2000). “Photocatalytic TiO2 deposition by chemical vapor deposition,” J. Hazard. Mater. JHMAD9 73, 199206.10.1016/S0304-3894(99)00179-XCrossRefGoogle ScholarPubMed
Colombi, P., Zanola, P., Bontempi, E., and Depero, L. E. (2007). “Modeling of glancing incidence X-ray for depth profiling of thin layers,” Spectrochim. Acta, Part B SAASBH 62, 554557.10.1016/j.sab.2007.02.012CrossRefGoogle Scholar
Colombi, P., Zanola, P., Bontempi, E., Roberti, R., Gelfi, M., and Depero, L. E. (2006). “Glancing-incidence X-ray diffraction for depth profiling of polycrystalline layers,” J. Appl. Crystallogr. JACGAR 39, 176179.10.1107/S0021889805042779CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. JACGAR 35, 734743. 〈http://vincefn.net/Fox/〉.10.1107/S0021889802015236CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2004). “A better FOX: Using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction,” Z. Kristallogr. ZEKRDZ 219, 847856. 〈http://vincefn.net/Fox/〉.10.1524/zkri.219.12.847.55869CrossRefGoogle Scholar
Fewster, P. F., Andrew, N. L., Holý, V., and Barmak, K. (2005). “X-ray diffraction from poly-crystalline multilayers in grazing-incidence geometry: Measurement of crystallite size depth distribution,” Phys. Rev. B PRBMDO 72, 174105.10.1103/PhysRevB.72.174105CrossRefGoogle Scholar
Iuga, M., Steinle-Neumann, G., and Meinhardt, J. (2007). “Ab initio simulation of elastic constants for some ceramic materials,” Eur. Phys. J. B EPJBFY 58, 127133.10.1140/epjb/e2007-00209-1CrossRefGoogle Scholar
Kužel, R., Janeček, M., Matěj, Z., Čížek, J., Dopita, M., and Srba, O. (2010). “Microstructure of ECAP Cu and Cu-Zr samples studied by different methods,” Metall. Mater. Trans. A MMTAEB 41A, 11741190.CrossRefGoogle Scholar
Kužel, R., Nichtová, L., Matěj, Z., Heřman, D., Šícha, J., and Musil, J. (2007a). “Study of crystallization of magnetron sputtered TiO2 thin films by X-ray scattering,” Z. Kristallogr. Suppl. ZEKRDZ 26, 247252.10.1524/zksu.2007.2007.suppl_26.247CrossRefGoogle Scholar
Kužel, R., Nichtová, L., Matěj, Z., Heřman, D., Šícha, J., and Musil, J. (2007b). “Growth of magnetron sputtered TiO2 thin films studied by X-ray scattering,” Z. Kristallogr. Suppl. ZEKRDZ 26, 241246.10.1524/zksu.2007.2007.suppl_26.241CrossRefGoogle Scholar
Kužel, R., Nichtová, L., Matěj, Z., Šícha, J., and Musil, J. (2008). “Magnetron deposited TiO2 thin films—Crystallization and temperature dependence of microstructure and phase composition,” Z. Kristallogr. Suppl. ZEKRDZ 27, 287294.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (1994). General structure analysis system (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM. 〈http://www.ccp14.ac.uk/solution/gsas/〉.Google Scholar
Lutterotti, L., Chateigner, D., Ferrari, S., and Ricote, J. (2004). “Texture, residual stress and structural analysis of thin films using a combined X-ray analysis,” Thin Solid Films THSFAP 450, 3441http://www.ing.unitn.it/~maud〉.10.1016/j.tsf.2003.10.150CrossRefGoogle Scholar
Matěj, Z. and Kužel, R. (2009). Program/library for MicroStructure analysis by powder diffraction (MSTRUCT). 〈http://xray.cz/mstruct/〉 (March 24, 2010).Google Scholar
Matěj, Z., Nichtová, L., and Kužel, R. (2009). “Coplanar grazing exit X-ray diffraction on thin polycrystalline films,” Z. Kristallogr. ZEKRDZ 30, 157162.CrossRefGoogle Scholar
Negishi, J., Takeuchi, M., and Ibusuki, T. (1998). “Surface structure of the TiO2 thin film photocatalyst,” J. Mater. Sci. JMTSAS 33, 57895794.10.1023/A:1004441829285CrossRefGoogle Scholar
Nichtová, L., Kužel, R., Matěj, Z., Šícha, J., and Musil, J. (2009). “Time and thickness dependence of crystallization of amorphous magnetron deposited TiO2 thin films,” Z. Kristallogr. ZEKRDZ 30, 235240.Google Scholar
Noma, T., Takada, K., and Lida, A. (1999). “Surface-sensitive X-ray fluorescence and diffraction analysis with grazing-exit geometry,” X-Ray Spectrom. XRSPAX 28, 433439.10.1002/(SICI)1097-4539(199911/12)28:6<433::AID-XRS386>3.0.CO;2-C3.0.CO;2-C>CrossRefGoogle Scholar
Popa, N. C. (2000). “Diffraction-line shift caused by residual stress in polycrystal for all Laue groups in classical approximations,” J. Appl. Crystallogr. JACGAR 33, 103107.CrossRefGoogle Scholar
Popa, N. C. and Balzar, D. (2001). “Elastic strain and stress determination by Rietveld refinement: Generalized treatment for textured polycrystals for all Laue classes,” J. Appl. Crystallogr. JACGAR 34, 187195.10.1107/S0021889801002060CrossRefGoogle Scholar
Ribárik, G., Ungár, T., and Gubicza, J. (2001). “MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions,” J. Appl. Crystallogr. JACGAR 34, 669676.10.1107/S0021889801011451CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B PHYBE3 192, 5569. 〈http://www.ill.eu/sites/fullprof/〉.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Scardi, P. and Leoni, M. (1999). “Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects,” J. Appl. Crystallogr. JACGAR 32, 671682.10.1107/S002188989900374XCrossRefGoogle Scholar
Scardi, P. and Leoni, M. (2002). “Whole powder pattern modeling,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 58, 190200.10.1107/S0108767301021298Google Scholar
Scardi, P. and Leoni, M. (2006). “Line profile analysis: Pattern modelling versus profile fitting,” J. Appl. Crystallogr. JACGAR 39, 2431.10.1107/S0021889805032978CrossRefGoogle Scholar
Šimek, D., Kužel, R., and Rafaja, D. (2006). “Reciprocal-space mapping for simultaneous de-termination of texture and stress in thin films,” J. Appl. Crystallogr. JACGAR 39, 487501.10.1107/S0021889806015500Google Scholar
Sopyan, N., Watanabe, M., Murasawa, S., Hashimoto, K., and Fujishima, A. (1996). “An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation,” J. Photochem. Photobiol., A JPPCEJ 98, 7986.10.1016/1010-6030(96)04328-6CrossRefGoogle Scholar
Toney, F. and Brennan, S. (1989). “Observation of the effect of refraction on X-rays diffracted in a grazing-incidence asymmetric Bragg geometry,” Phys. Rev. B PRBMDO 39, 79637966.10.1103/PhysRevB.39.7963CrossRefGoogle Scholar
Velterop, L., Delhez, R., Keijser, Th. H., Mittemeijer, E. J., and Reefman, D. (2000). “X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: A revision and allowance for texture and non-uniform fault probabilities,” J. Appl. Crystallogr. JACGAR 33, 296306.10.1107/S0021889800000133CrossRefGoogle Scholar
Wilson, A. J. C. (1949). X-Ray Optics (Methuen, London), p. 5.Google Scholar