Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T12:00:50.606Z Has data issue: false hasContentIssue false

Synthesis and structural characterization of 3-[1-[4-(2-methylpropyl)phenyl]ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole

Published online by Cambridge University Press:  02 September 2019

Gülsüm Gündoğdu*
Affiliation:
Faculty of Engineering, Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
Arzu Karayel
Affiliation:
Faculty of Arts and Sciences, Department of Physics, Hitit University, 19030 Çorum, Turkey
Sevim Peri Aytaç
Affiliation:
Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
Birsen Tozkoparan
Affiliation:
Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
Filiz Betül Kaynak
Affiliation:
Faculty of Engineering, Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

3-[1-[4-(2-Methylpropyl)phenyl]ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C21H21FN4S) has been synthesized as a member of a series of triazolothiadiazoles having NSAIDs moieties with cytotoxic activity. The crystal structure of this new compound has been solved and refined using conventional laboratory X-ray powder diffraction data and optimized using density functional techniques. The final structure solution was achieved by Rietveld refinement using soft restraints on all non-H atom bond lengths and angles. This compound crystallizes in $P\bar{1}\;$ space group, with the unit cell parameters a = 5.5880(4) Å, b = 9.3074(7) Å, c = 19.497(4) Å, α = 99.311(10)°, β = 91.925(9)°, γ = 98.199(6)°, and V = 988.8(2) Å3. To complement and verify the structure solution of the compound, the density functional theory (DFT) calculations were performed by using the local density approximation and the generalized gradient approximation for exchange-correlation energy. In order to see the effect of the van der Waals interactions on the electronic structure, the relevant structure was also optimized with B3LYP-D2, PBE-D2, and optB88-vdW functionals. The refined crystal structure was confirmed by the DFT calculations. The best agreement with the experimental structure was achieved by optB88-vdW functional.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This article is a part of the PhD thesis of Gülsüm Gündoğdu.

References

Aytaç, S. P., Tozkoparan, B., Kaynak, F. B., Aktay, G., Göktaş, Ö., and Ünüvar, S. (2009). “Synthesis of 3,6-disubstituted 7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as novel analgesic/anti-inflammatory compounds,” Eur. J. Med. Chem. 44(11), 45284538.Google Scholar
Aytaç, P. S., Durmaz, I., Houston, D. R., Çetin-Atalay, R., and Tozkoparan, B. (2016). “Novel triazolothiadiazines act as potent anticancer agents in liver cancer cells through Akt and ASK-1 proteins,” Bioorg. Med. Chem. 24(4), 858872.Google Scholar
Balzar, D. (1993). “X-ray diffraction line broadening: modeling and applications to high-Tc superconductors,” J. Res. Natl. Inst. Stand. Technol. 98(3), 321353.Google Scholar
Blöchl, P. E. (1994). “Projector augmented-wave method,” Phys. Rev. B. 50(24), 1795317979.Google Scholar
Cansız, A., Cetin, A., Orek, C., Karatepe, M., Sarac, K., Kus, A., and Koparir, P. (2012). “6-Phenyl-3-(4-pyridyl)-1,2,4-triazolo-[3,4-b][1,3,4]thiadiazole: synthesis, experimental, theoretical characterization and biological activities,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 606615.Google Scholar
Ceperley, D. M. and Alder, B. J. (1980). “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566569.Google Scholar
Cheary, R. W. and Coelho, A. A. (1998). “Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations,” J. Appl. Crystallogr. 31(6), 851861.Google Scholar
Coelho, A. A. (2012). TOPAS Academic Version 5: User Manual.Google Scholar
Cooper, R. I., Thompson, A. L., and Watkin, D. J. (2010). “CRYSTALS enhancements: dealing with hydrogen atoms in refinement,” J. Appl. Crystallogr. 43(5 Pt 1), 11001107.Google Scholar
Fan, Z., Yang, Z., Zhang, H., Mi, N., Wang, H., Cai, F., Zuo, X., Zheng, Q., and Song, H. (2010). “Synthesis, crystal structure, and biological activity of 4-methyl-1,2,3-thiadiazole-containing 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles,” J. Agric. Food. Chem. 58(5), 26302636.Google Scholar
Farrugia, L. J. (2012). “WinGX and ORTEP for windows: an update,” J. Appl. Crystallogr. 45(4), 849854.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35(6), 734743.Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., and Cross, J. B. (2009). GAUSSIAN 09 (Revision A.1) (Gaussian, Inc., Wallingford, CT).Google Scholar
Grimme, S. (2006). “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27(15), 17871799.Google Scholar
Gündoğdu, G., Aytaç, S. P., Müller, M., Tozkoparan, B., and Kaynak, F. B. (2017). “Structure determination of two structural analogs, named 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) by synchrotron X-ray powder diffraction,” Powder Diffr. 32(4), 279289.Google Scholar
Kaduk, J. A., Gindhart, A. M., and Blanton, T. N. (2016). “Crystal structure of norgestimate, C23H31NO3,” Powder Diffr. 31(4), 274278.Google Scholar
Khan, M. H., Hameed, S., Tahir, M. N., Bokhari, T. H., and Khan, I. U. (2009). “6-(1-Adamantyl)-3-(2-fluorophenyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole,” Acta Crystallogr. E. 65, o1437.Google Scholar
Khan, I., Zaib, S., Ibrar, A., Rama, N. H., Simpson, J., and Iqbal, J. (2014). “Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines,” Eur. J. Med. Chem. 78, 167177.Google Scholar
Khan, I., Bakht, S. M., Ibrar, A., Abbas, S., Hameed, S., White, J. M., Rana, U. A., Zaib, S., Shahid, M., and Iqbal, J. (2015). “Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies,” RSC Adv. 5(27), 2124921267.Google Scholar
Klimeš, J., Bowler, D. R., and Michaelides, A. (2010). “Chemical accuracy for the van der Waals density functional,” J. Phys. Condens. Matter 22, 022201.Google Scholar
Kresse, G. and Furthmüller, J. (1996a). “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B. 54, 1116911186.Google Scholar
Kresse, G. and Furthmüller, J. (1996b). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Kresse, G. and Hafner, J. (1993). “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B. 47, 558561.Google Scholar
Kresse, G. and Joubert, D. (1999). “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B. 59, 17581775.Google Scholar
Lu, D., Zhang, M., Song, L., Tan, Q., and Shao, M. (2008). “Ethyl 5-[6-(furan-2-yl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazol-3-yl]-2,6-dimethylnicotinate,” Acta Crystallogr. E. 64, o80o81.Google Scholar
Monkhorst, H. J. and Pack, J. D. (1976). “Special points for Brillouin-zone integrations,” Phys. Rev. B. 13(12), 5188.Google Scholar
Perdew, J. P. and Zunger, A. (1981). “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B. 23, 50485079.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868.Google Scholar
Tozkoparan, B., Aytaç, S. P., and Aktay, G. (2009). “Novel 3,6-disubstituted 7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines: synthesis, characterization, and evaluation of analgesic/anti-inflammatory, antioxidant activities,” Arch. Pharm. Chem. Life Sci. 342, 291298.Google Scholar
Tozkoparan, B., Aytac, P. S., Gursoy, S., Gunal, S., and Aktay, G. (2012). “Novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives as dual analgesic/anti-inflammatory and antimicrobial agents,” Lett. Drug. Des. Discov. 9, 204212.Google Scholar
van de Streek, J. (2015). “Structure of Pigment Yellow 181 dimethylsulfoxide N-methyl-2-pyrrolidone (1:1:1) solvate from XRPD + DFT-D,” Acta Crystallogr. B. 71, 8994.Google Scholar
van de Streek, J. and Neumann, M. A. (2010). “Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations,” Acta Crystallogr. B. 66, 544558.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B. 70, 10201032.Google Scholar
Wu, P. (2013). “Crystal structure of 6-ferrocenyl-3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole,” J. Struct. Chem. 54(5), 983985.Google Scholar
Supplementary material: File

Gündoğdu et al. supplementary material

Gündoğdu et al. supplementary material

Download Gündoğdu et al. supplementary material(File)
File 131.8 KB