Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T05:41:05.407Z Has data issue: false hasContentIssue false

Synthesis and crystal structure of Na3.5Cr1.5Co0.5(PO4)3 phosphate

Published online by Cambridge University Press:  01 March 2012

Mohamed Chakir
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II, Faculté des Sciences Ben M’Sik, Casablanca, Morocco
Abdelaziz El Jazouli
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II, Faculté des Sciences Ben M’Sik, Casablanca, Morocco
Jean-Pierre Chaminade
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, 87, Av. Dr. Schweitzer, 33608 Pessac, France

Abstract

A new Nasicon phosphates series [Na3+xCr2−xCox(PO4)3(0⩽x⩽1)] was synthesized by a coprecipitation method and structurally characterized by powder X-ray diffraction. The selected compound Na3.5Cr1.5Co0.5(PO4)3 (x=0.5) crystallizes in the R3c space group with the following hexagonal unit-cell dimensions: ah=8.7285(3) Å, ch=21.580(2) Å, V=1423.8(1) Å3, and Z=6. This three-dimensional framework is built of PO4 tetrahedra and Cr∕CoO6 octahedra sharing corners. Na atoms occupy totally M(1) sites and partially M(2) sites.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A. (2004). “Synthesis and structural characterization of ASnFe(PO4)3 (A=Na2,Ca,Cd) phosphates with the Nasicon type structure,” Powder Diffr. PODIE2 10.1154/1.1725232 19, 272279.CrossRefGoogle Scholar
Alamo, J. (1993). “Chemistry and properties of solids with the [NZP] skeleton,” Solid State Ionics SSIOD3 63–65, 547561.CrossRefGoogle Scholar
Boilot, J. P., Collin, G., and Comes, R. (1983). “Zirconium deficiency in Nasicon-type compounds: crystal structure of Na5Zr(PO4)3,” J. Solid State Chem. JSSCBI 10.1016/0022-4596(83)90236-0 50, 9199.CrossRefGoogle Scholar
Brese, N. E. and O’Keeffe, M. (1991). “Bond-valence Parameters for solids,” Acta Crystallogr. Sect. B: Struct. Sci. 47, 192197.CrossRefGoogle Scholar
Chakir, M., El Jazouli, A., and De Waal, D. (2003). “Synthesis, structure and vibrational studies of NaZr2(AsO4)3,” Mater. Res. Bull. MRBUAC 38, 17731779.CrossRefGoogle Scholar
Delmas, C., Cherkaoui, F., and Hagenmuller, P. (1986). “Ionic conductivity in a new NASICON related solid solution: Na3+yCr2−yMgy(PO4)3. An optical characterization of the skeleton covalency,” Mater. Res. Bull. MRBUAC 10.1016/0025-5408(86)90013-9 21, 469477.CrossRefGoogle Scholar
Goodenough, J. B., Hong, H. Y-P., and Kafalas, J. A. (1976). “Fast Na+-ion transport in skeleton structures,” Mater. Res. Bull. MRBUAC 10.1016/0025-5408(76)90077-5 11, 203220.CrossRefGoogle Scholar
Krimi, S., El Jazouli, A., Lachgar, A., Rabardel, L., de Waal, D., and Ramos-Barrado, J. R. (2000). “Glass-crystal transformation of Na5−2xCaxTi(PO4)3 phosphates,” Ann. Chim.-Sci. Mat. 25, 7578.Google Scholar
Leclaire, A., Borel, M.-M., Grandin, A., and Raveau, B. (1989). “A mixed-valence niobium phosphate with an empty nasicon structure: Nb2(PO4)3,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45, 699701.CrossRefGoogle Scholar
Manoun, B., El Jazouli, A., Krimi, S., and Lachgar, A. (2004). “Synthesis and crystallochemistry of Na4CrNi(PO4)3,” Powder Diffr. PODIE2 10.1154/1.1596632 19, 162164.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” Commission Powder Diffraction, Newsletter 26, 1219.Google Scholar
Salmon, R., Parent, C., Vlasse, M., and Le Flem, G. (1979). “The sodium ytterbium orthophosphate Na3+xYb2−x(PO4)3,” Mater. Res. Bull. MRBUAC 14, 8589.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 10.1107/S0567739476001551 32, 751767.CrossRefGoogle Scholar