Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T11:30:20.608Z Has data issue: false hasContentIssue false

Synchrotron X-ray diffraction study of double perovskites Sr2RNbO6 (R = Sm, Gd, Dy, Ho, Y, Tm, and Lu)

Published online by Cambridge University Press:  18 October 2018

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards AND Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Department of Chemical Science, Illinois Institute of Technology, Chicago, Illinois 60616
S. H. Lapidus
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
L. Ribaud
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
S. P. Diwanji
Affiliation:
Materials Measurement Science Division, National Institute of Standards AND Technology, Gaithersburg, Maryland 20899
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A series of double-perovskite oxides, Sr2RNbO6 (R = Sm, Gd, Dy, Ho, Y, Tm, and Lu) were prepared and their crystal structure and powder diffraction reference patterns were determined using the Rietveld analysis technique. The crystal structure of each of the Sr2RNbO6 phase is reported in this paper. The R = Gd, Ho, and Lu samples were studied using synchrotron radiation, while R = Sm, Dy, Y, and Tm samples were studied using laboratory X-ray diffraction. Members of Sr2RNbO6 are monoclinic with a space group of P21/n and are isostructural with each other. Following the trend of “lanthanide contraction”, from R = Sm to Lu, the lattice parameters “a” of these compounds decreases from 5.84672(10) to 5.78100(3) Å, b from 5.93192(13) to 5.80977(3) Å, c from 8.3142(2) to 8.18957(5) Å, and V decreases from 288.355(11) to 275.057(2) Å3. In this double-perovskite series, the R3+ and Nb5+ ions are structurally ordered. The average Nb–O bond length is nearly constant, while the average R–O bond length decreases with the decreasing ionic radius of R3+. Powder diffraction patterns for these compounds have been submitted to the Powder Diffraction File (PDF).

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr. B 41, 244247.Google Scholar
Chan, J. C., Bock, J. A., Guo, H., Trolier-McKinstry, S., and Randall, C. A. (2017). “High-temperature thermoelectric characterization of filled strontium barium niobates: power factors and carrier concentrations,” Mater. Res. 32, 11601167.Google Scholar
Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S., Watson, W., Clausen, M., and Dalesio, J. (1994). “Nuclear instruments & methods in physics research section A – accelerators spectrometers detectors and associated equipment,” 352, 179184.Google Scholar
Grebille, D., Lambert, S., Bouree, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.Google Scholar
Henmi, K. and Hinatsu, Y. (1999). “Crystal structures and magnetic properties of ordered perovskites Ba2LnNbO6 (Ln = Lanthanide elements),” J. Solid State Chem. 148, 353360.Google Scholar
Huang, Z., Yan, D., Tien, T., and Chen, I. (1991). “Phase relationships in the La2O3-SrO-Nb2O5 system,” Mater. Lett. 11, 286290.Google Scholar
Karunadasa, H., Huang, Q., Ueland, B. G., Schiffer, P., and Cava, R. J. (2003). “Ba2LnSbo6 and Sr2LnSbO6 (Ln = Dy, Ho, Gd) double perovskites: lanthanides in the geometrically frustrating fcc lattice,” PNAS 100, 80978102.Google Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, USA.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15, 427432.Google Scholar
Li, S., Funahashi, R., Matsubara, I., Yamada, H., Ueno, K., and Sodeoka, S. (2001). “Synthesis and thermoelectric properties of the new oxide ceramics Ca3−xSrxCo4O9+δ (x = 0.0–1.0),” Ceram. Int. 27, 321324.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9,” Phys. Rev. B 62, 166175.Google Scholar
Maupoey, Z., Azcondo, M. T., Amador, U., Kuhn, A., Perez Flores, J. C., De Paz, J. R., Bonanos, N., and Garcia Alvarado, F. (2012). “The role of the Eu3+/Eu2+ redox-pair in the electrical properties of Sr2EuNb1−xTixO6−d oxides,” J. Mater. Chem. 22, 1803318042.Google Scholar
McMurdie, H., Morris, M., Evans, E., Paretzkin, B., Wong-Ng, W., Ettlinger, L., and Hubbard, C. R. (1986) “JCPDS – International Centre for Diffraction Data task group on cell parameter refinement,” Powder Diffr. 1, 6676.Google Scholar
Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−xBax)3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci. 197, 442447.Google Scholar
Moon, Ji-W., Masuda, Y., Seo, W-S., and Koumoto, K. (2001). “Influence of ionic size of rare-earth of rare-earth site on the thermoelectric properties of RCoO3-type perovskite cobalt oxides,” Mater. Sci. Eng. B85, 7075.Google Scholar
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).Google Scholar
Otani, M., Lowhorn, N. D., Schenck, P. K., Wong-Ng, W., and Green, M. (2007). “A high-throughput thermoelectric screening tool for rapid construction of thermoelectric phase diagrams,” Appl. Phys. Lett. 91, 132102.Google Scholar
PDF, Powder Diffraction File (2018). Produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA. 19073-3273, USA.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Sehlin, S. R., Anderson, H. U., and Sparlin, D. M. (1995). “Semi-empirical model for the electrical properties of La1−xCaxCoO3,” Phys. Rev. B 52, 11681.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32, 751767.Google Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, 1268512687.Google Scholar
Trunov, V. K., Sirotinkin, V. P., and Evdokimov, A. A. (1983). “An X-ray diffraction study of the compounds Sr2LnEO6 (E = Nb or Ta),” Russ. J. Inorg. Chem. (Engl. Transl.) 28, 349.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.Google Scholar
Wang, Y., Sui, Y., Ren, P., Wang, L., Wang, X., Su, W., and And Fan, H. J. (2010). “Correlation between the structural distortions and thermoelectric characteristics in La1−xAxCoO3 (A = Ca and Sr),” Inorg. Chem. 49, 32163223.Google Scholar
Wong-Ng, W., McMurdie, H. F., Hubbard, C. R., and Mighell, A. D. (2001). “JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST),” J. Res. Natl. Inst. Stand. Technol. 106, 10131028.Google Scholar
Wong-Ng, W., Hu, Y. F., Vaudin, M. D., He, B., Otani, M., Lowhorn, N. D., and Li, Q. (2007). “Texture analysis of a Ca3Co4O9 thermoelectric film on Si (100) substrate,” J. Appl. Phys. 102, 33520.Google Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E., Lowhorn, N., and Otani, M. (2010). “Phase compatibility of the thermoelectric compounds in the Sr-Ca-Co-O system,” J. Appl. Phys. 107, 033508.Google Scholar
Wong-Ng, W., Yan, Y., Kaduk, J. A., and Tang, X. F. (2016). “X-ray powder diffraction reference patterns for Bi1−xPbxOCuSe,” Powder Diffr. 31, 223228.Google Scholar
Wong-Ng, W., Yan, Y., Kaduk, J. A., and Tang, X. F. (2017). “Crystallographic and powder diffraction reference patterns for thermoelectric oxyselenides Bi1−xAxOCuSe (A = alkaline-earth elements),” Solid State Sci. 72, 5563.Google Scholar
Supplementary material: File

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 1

Download Wong-Ng et al. supplementary material(File)
File 586.9 KB