Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T22:40:31.073Z Has data issue: false hasContentIssue false

Structure determination and Rietveld refinement of Y0.8Ca0.2Ba1.8La0.2Cu3Oy

Published online by Cambridge University Press:  05 March 2012

X. S. Wu
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics, and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
F. Z. Wang
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics, and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
S. S. Jiang
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Institute of Solid State Physics, and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China

Abstract

The structure of the new Y0.8Ca0.2Ba1.8La0.2Cu3Oy (YBLCO) compound was obtained at 298 K from X-ray powder diffraction data and refined by the Rietveld technique. YBLCO has a structure isotypical with YBa2Cu3Oy (YBCO) at room temperature. The crystal data are: Y0.81Ca0.19Ba1.8La0.2Cu3O7.08, Mw=657.69, orthorhombic system, space group Pmmm, a=3.8731(1) Å, b=3.8249(1) Å, c=11.6602(3) Å, V=172.740(13) Å3, Z=1, dx=6.325 g/cm3; the structure was refined with 37 parameters to Rwp=7.66%, Rp=5.86%, and Rexp=5.11% for 2001 data points. Moreover, the proportions of Ca and La were refined to be 0.19 and 0.2, in agreement with the stoichiometric proportion of 0.2.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Capponi, J. J., Chaillont, C., Hewat, A. W., Lejay, P., Mariezio, M., Nguyou, N., Raveau, B., Sonbeyroux, J. L., Tholence, J., and Tounier, R. (1987). “Structure of the 100 K superconductor Ba2YCu3O7 between 5–300 K by neutron powder diffraction,” Europhys. Lett. EULEEJ 3, 13011307. eul, EULEEJ Google Scholar
Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Pabe, K. M., Drajewski, J. J., Peck, W. F. Jr, and Rapp, L. W. Jr (1990). “Structural anomalies oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox,Physica C PHYCE6 165, 419423. phc, PHYCE6 CrossRefGoogle Scholar
Cernik, R. J., Cheetham, A. K., Prout, C. K., Watkin, D. J., Wilkinson, A. P., and Willis, B. T. M. (1991). “The structure of cimetidine (C10H16N6S) solved from synchrotron-radiation X-ray powder diffraction data,” J. Appl. Crystallogr. JACGAR 24, 222226. acr, JACGAR CrossRefGoogle Scholar
Clearfield, A., McCusker, L. B., and Rudolf, P. (1984). “Crystal structures from powder data. 1. Crystal structure of ZrKH(PO4)2,Inorg. Chem. INOCAJ 23, 46794682. ino, INOCAJ CrossRefGoogle Scholar
Jorgensen, J. D., Veal, B. W., Paulikis, A. P., Lowicki, L. J., and Grabtree, G. W. (1990). “Structural properties of oxygen-deficient YBa2Cu3O7−δ,Phys. Rev. B PRBMDO 41, 18631877. prb, PRBMDO CrossRefGoogle Scholar
Lightfoot, P., Thomson, J. B., Little, F. J., and Bruce, P. G. (1994). “Ab initio determination of crystal structures by X-ray powder diffraction: Structure of Li29Zr9Nb3O40,J. Mater. Chem. JMACEP 4, 167169. jtc, JMACEP CrossRefGoogle Scholar
Louer, M., Plevert, J., and Louer, D. (1988). “Structure of KCaPO4.H2O from X-ray powder diffraction data,” Acta Crystallogr. ACACEQ 44, 463467. acf, ACACEQ CrossRefGoogle Scholar
Norton, D. P., Lowades, D. H., Sales, B. C., Budai, J. D., Chakoumakos, B. C., and Kerchner, H. R. (1991). “Superconductivity and hole doping in Pr0.5Ca0.5Ba2Cu3O7−δ thin film,” Phys. Rev. Lett. PRLTAO 66, 15371539. prl, PRLTAO CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. JACGAR 14, 357361. acr, JACGAR CrossRefGoogle Scholar
Sheldrick, G. M. (1990). “Phase annealing in SHELXL-90: Direct methods for larger structures,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 46, 467473. acf, ACACEQ CrossRefGoogle Scholar
Wilson, C. C., and Wadsworth, J. W. (1990). “Crystal structure determination from low-resolution X-ray diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 46, 258262. acf, ACACEQ CrossRefGoogle Scholar
Werner, P-E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semiexhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370. acr, JACGAR CrossRefGoogle Scholar
Wu, X. S., and Gao, J. (1999a). “Structure and transport properties in calcium-doped YBa1.8La0.2Cu3Oy cuprates,” Physica C PHYCE6 313, 4957. phc, PHYCE6 CrossRefGoogle Scholar
Wu, X. S., and Gao, J. (1999b). “Effects on structure and superconductivity for La and Ca ing in YBa2Cu3Oy cuprates,” Physica C PHYCE6 320, 206212. phc, PHYCE6 CrossRefGoogle Scholar
Yang, Ping, Sivakumar, A., and Hoong-Kun, Fun. (1995). “Ab initio structure determination and Rietveld refinement of the crystal structure of (Pb0.6Cu0.4)Sr2PrCu2O7−x,Powder Diffr. PODIE2 10, 154158. pdj, PODIE2 CrossRefGoogle Scholar
Young, R. A. (1985). “DBWS-9411: An upgrade of the DBWS programs for rietveld refinement with PC and mainframe computers,” J. Appl. Crystallogr. JACGAR 28, 366367. acr, JACGAR CrossRefGoogle Scholar