Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T18:24:00.341Z Has data issue: false hasContentIssue false

Microstructural analysis of nickel hydroxide: Anisotropic size versus stacking faults

Published online by Cambridge University Press:  01 March 2012

Montse Casas-Cabanas
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Spain
Maria Rosa Palacín
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Spain
Juan Rodríguez-Carvajal*
Affiliation:
Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
*
a)Electronic mail: [email protected]

Abstract

Two different approaches for studying sample’s contributions to diffraction-line broadening are analyzed by applying them to several nickel hydroxide samples. Both are based in the refinement of powder diffraction data but differ in the microstructural model used. The first one consists in the refinement of the powder diffraction pattern using the FAULTS program, a modification of DIFFaX, which assigns peak broadening mainly to the presence of stacking faults and treats finite size effects by convolution with a Voigt function. The second method makes use of the program FULLPROF, which allows the use of linear combinations of spherical harmonics to model peak broadening coming from anisotropic size effects. The complementary use of transmission electron microscopy has allowed us to evaluate the best approach for the Ni(OH)2 case. In addition, peak shifts, corresponding to reflections 10l (l≠0) were observed in defective nickel hydroxide samples that can be directly correlated with the degree of faulting.

Type
Invited Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audemer, A. (1997). PhD thesis, University of Picardie, Amiens, France.Google Scholar
Balzar, D. (1999). Chapter 7 in Defect and Microstructure Analysis by Diffraction, edited by Bunge, H. -J., Fiala, J., and Snyder, R. L. (IUCr/Oxford University Press).Google Scholar
Bardé, F. (2003). PhD thesis, University of Picardie, Amiens, France.Google Scholar
Casas-Cabanas, M., Rodríguez-Carvajal, J., and Palacín, M. R. (2005). “FAULTS, a new program for refinement of powder diffraction patterns from layered structures,” Kristallogr, Z.. Proceedings of the 9th European Powder Diffraction Conference, in press.Google Scholar
Deabate, S., Fourgeot, F., and Henn, F. (2000). “X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis,” J. Power SourcesJPSODZ10.1016/S0378-7753(99)00437-1 87, 125136.CrossRefGoogle Scholar
Delahaye-Vidal, A., Beaudoin, B., and Figlarz, M. (1986). “Textural and structural studies on nickel hydroxide electrodes. 1. Crystallized nickel hydroxide materials submitted to chemical and electrochemical redox cycling,” React. SolidsRESOED10.1016/0168-7336(86)80085-7 2, 223233.CrossRefGoogle Scholar
Delmas, C. and Tessier, C. (1997). Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity” J. Mater. Sci.JMTSAS 7(8), 14391443.Google Scholar
Falk, S. U. and Salkind, A. J. (1969). Alkaline storage batteries (Wiley, New York), p. 56.Google Scholar
González-Platas, J. and Rodríguez-Carvajal, J. (2002). Graphic Fourier Program GFOURIER, Version 4.02, Universidad La Laguna, Tenerife, Spain.Google Scholar
Greaves, C. and Thomas, M. A. (1986). “Refinement of the structure of deuterated nickel-hydroxide, Ni(OD)2, by powder neutron-diffraction and evidence for structural disorder in samples with high surface-area,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768186098592 42, 5155.CrossRefGoogle Scholar
Järvinen, M. (1993). “Application of symmetrized harmonics expansion to correction of the preferred orientation effect,” J. Appl. Crystallogr.JACGAR10.1107/S0021889893001219 26, 525531.Google Scholar
Langford, J. I. and Louër, D. (1982). “Diffraction line profiles and Scherrer constants for materials with cylindrical crystallites,” J. Appl. Crystallogr.JACGAR10.1107/S0021889882011297 15, 2026.CrossRefGoogle Scholar
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys.RPPHAG10.1088/0034-4885/59/2/002 59, 131234.CrossRefGoogle Scholar
Le Bihan, S., Guenot, J., and Figlarz, M. C. (1970). “Crystallogenesis of nickel hydroxide Ni(OH)2,” C. R. Acad. Sci. II C 270, 21312133.Google Scholar
Leoni, M., Gualtieri, A. F., and Roveri, N. (2004). “Simultaneous refinement of structure and microstructure of layered materials,” J. Appl. Crystallogr.JACGAR10.1107/S0021889803022787 37, 166173.Google Scholar
Lobo, R. F. and van Koningsveld, H. (2002). “New description of the disorder in zeolite ZSM-48,” J. Am. Chem. Soc.JACSAT10.1021/ja020569v 124, 1322213230.CrossRefGoogle ScholarPubMed
Louër, D., Weigel, D., and Langford, J. I. (1972). “Etude des profils de raies de diffraction des rayons X d’une poudre d’hydroxyde de nickel,” J. Appl. Crystallogr.JACGAR10.1107/S0021889872009756 5, 353359.CrossRefGoogle Scholar
Lu, Z. H. and Dahn, J. R. (2001). “Effects of stacking fault defects on the X-ray diffraction patterns of T2, O2, and O6 structure Li-2/3[CoxNil/3-xMn2/3]O-2,” Chem. Mater.CMATEX 13, 2078.CrossRefGoogle Scholar
Lutterotti, L. and Scardi, P. (1992). “LSI - A computer program for simultaneous refinement of material structure and microstructure,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892001122 25, 459462.CrossRefGoogle Scholar
McBreen, J. (1990). Modern aspects of electrochemistry, edited by White, R. E., Bockris, J. O’M., and Conway, B. E. (Plenum, New York), Vol. 21, pp. 2963.Google Scholar
Nelder, J. A. and Mead, R. (1965). “A simplex method for function minimization,” Comput. J.CMPJA6 7, 308313.Google Scholar
Palosz, B., Stelmakh, S., and Gierlotka, S. (1995). “Refinement of polycrystalline disordered cubic silicon-carbide by structure modeling and X-ray-diffraction simulation,” Z. Kristallogr.ZEKRDZ 210, 731740.CrossRefGoogle Scholar
Popa, N. C. (1998). “The (h k l) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld definement,” J. Appl. Crystallogr.JACGAR10.1107/S0021889897009795 31, 176.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica BPHYBE310.1016/0921-4526(93)90108-I 192, 5569. (The program and the manual are available at ftp://ftp.cea.fr/pub/llb/divers/fullprof.2k)CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2001). Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr). Newsletter, 26, 1219. (Available at http://journals.iucr.org/iucr-top/comm/cpd/Newsletters)Google Scholar
Sebastian, M. T. and Krishna, P. (1994). Random, non-random and Periodic Faulting in Crystals. pp. 2830 (Gordon and Breach Science Publishers, London).Google Scholar
Seshadri, R., Hervieu, M., Martin, C., Maignan, A., Domenges, B., Raveau, B., and Fitch, A. N. (1997). “Study of the layered magnetoresistive perovskite Lai.2Srl.8Mn2O7 by high-resolution electron microscopy and synchrotron X-ray powder diffraction,” Chem. Mater.CMATEX10.1021/cm9605936 9, 17781787.CrossRefGoogle Scholar
Stokes, A. R. (1948). “A numerical Fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photographs,” Proc. Phys. Soc. LondonPPSOAU10.1088/0959-5309/61/4/311 61, 382391.CrossRefGoogle Scholar
Terasaki, O., Ohsuna, T., Alfredsson, V., Bovin, J. O., Watanabe, D., Carr, S. W., and Anderson, M. W. (1993). “Observation of spatially correlated intergrowths of faujastic polytypes and the pure end members by high-resolution electron-microscopy,” Chem. Mater.CMATEX10.1021/cm00028a010 5, 452458.CrossRefGoogle Scholar
Tessier, C., Haumesser, P. H., Bernard, P., and Delmas, C. (1999). “The structure of Ni(OH)2: From the ideal material to the electrochemically active one,” J. Electrochem. Soc.JESOAN10.1149/1.1391892 146, 20592067.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al 2O3,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887087090 20, 7983.Google Scholar
Treacy, M. M. J., Newsam, J. M., and Deem, M. W. (1991). “A general recursion method for calculating diffracted intensities from crystals containing planar faults,” Proc. R. Soc. London, Ser. APRLAAZ 433, 499520.Google Scholar
Warren, B. E. (1990). X-Ray Diffraction (Dover, New York), pp. 251314.Google Scholar
Warren, B. E. and Wakerois, E. P. (1953). “Measurements of stacking faults in cold-worked alpha brass,” J. Appl. Phys.JAPIAU 24, 951952.CrossRefGoogle Scholar
Wronski, Z. S., Carpenter, G. J. C., and Kalal, P. J. (1996). “An integrated characterization approach for ranking Ni hydroxides designed for high-performance positive electrodes in batteries for electric vehicles,” Electrochemical Society Proceedings (96–14), pp. 177188.Google Scholar