Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T18:53:35.218Z Has data issue: false hasContentIssue false

Lattice parameters and orthorhombic distortion of CaMnO3

Published online by Cambridge University Press:  29 February 2012

Wojciech Paszkowicz*
Affiliation:
Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw, Poland
Jarosław Piętosa
Affiliation:
Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw, Poland
Scott M. Woodley
Affiliation:
Department of Chemistry, University College London, 3rd Floor, Kathleen Lonsdale Building, Gower Street, London WC1E 6BT, United Kingdom
Piotr A. Dłużewski
Affiliation:
Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw, Poland
Mirosław Kozłowski
Affiliation:
Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw, Poland
Christine Martin
Affiliation:
Laboratoire CRISMAT-ENSICAEN, UMR CNRS 6805, CNRS, 6, Bld. Maréchal Juin, 14050 Caen Cedex 04, France
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

CaMnO3 is a parent compound for numerous multicomponent manganese perovskite oxides. Its crystallographic data are of primary importance in the science and technology of functional CaMnO3-based materials. In the present study, data were collected for a CaMnO3 sample at 302 K. The crystal structure refinement yields accurate absolute values of lattice parameters, a=5.281 59(4) Å, b=7.457 30(4) Å, and c=5.267 48(4) Å, leading to orthorhombic distortion of (c/a, √2c/b)=(0.997 33,0.998 95). The orthorhombic distortion of the CaMnO3 structure is discussed on the basis of comparison of our unit-cell size with data already published. At a graphical representation of the distortion, it is observed that there is a considerable scatter of the distortion values among the literature data but, interestingly, a considerable fraction of experimental results (including the present one) for stoichiometric samples are grouped around the distortion (c/a, √2c/b)=(0.9973,0.9990), which lies close to a maximum in the extent of orthorhombicity. The influence of off-stoichiometry on the orthorhombic distortion is discussed on the basis of available experimental data. Simulations, employing a mean-field approach for low temperatures, predict an increase in cell volume and structural distortions with the concentration of oxygen vacancies when the additional electrons are localized on the manganese. A simple model of delocalization produced the opposite effect, which is expected to combine with lattice vibrations to recover the cubic phase at high temperatures.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrashev, M., Bäckström, M. J., Börjesson, L., Popov, V. N., Chakalov, R. A., Kolev, R. A., Meng, R.-L., and Iliev, M. N. (2002). “Raman spectroscopy of CaMnO3: Mode assignment and relationship between Raman line intensities and structural distortions,” Phys. Rev. B PRBMDO 65, 184301.10.1103/PhysRevB.65.184301CrossRefGoogle Scholar
Akhtar, M. J., Catlow, C. R. A., Slater, B., Walker, A. M., and Woodley, S. M. (2006). “Bulk and surface simulation studies of La1-xCaxMnO3,” Chem. Mater. CMATEX 18, 15521560 .10.1021/cm052260rGoogle Scholar
Ang, R., Sun, Y. P., Ma, Y. Q., Zhu, X. B., and Song, W. H. (2006). “Diamagnetism and relative Young’s modulus in the perovskite manganites CaMn1-xVxO3 (0<x<0.08),” Solid State Commun. SSCOA4 140, 416421 .10.1016/j.ssc.2006.09.020CrossRefGoogle Scholar
Arai, H., Yamada, T., Eguchi, K., and Seiyama, T. (1986). “Catalytic combustion of methane over various perovskite-type oxides,” Appl. Catal. APCADI 26, 265276 .10.1016/S0166-9834(00)82556-7CrossRefGoogle Scholar
Bakken, E., Boerio-Goates, J., Grande, T., Hovde, B., Norby, T., Rørmark, L., Stevens, R., and Stølen, S. (2005). “Entropy of oxidation and redox energetics of CaMnO3-d,” Solid State Ion. 176, 22612267 .10.1016/j.ssi.2005.06.009CrossRefGoogle Scholar
Balakirev, V. F. and Golikov, Y. V. (2006). “Phase relations in alkaline earth–manganese–oxygen systems: Equilibrium and metastable states,” Inorg. Mater. INOMAF 42, S49S69.10.1134/S0020168506130036CrossRefGoogle Scholar
Bérar, J.-F. and Lelann, P. (1991). “E.s.d.’s and estimated probable error obtained in Rietveld refinements with local correlations,” J. Appl. Crystallogr. JACGAR 24, 15 .10.1107/S0021889890008391CrossRefGoogle Scholar
Bilinski, H., Kwokal, Ž., and Branica, M. (1996). “Formation of some manganese minerals from ferromanganese factory waste disposed in the Krka river estuary,” Water Res. WATRAG 30, 495500 .10.1016/0043-1354(95)00207-3Google Scholar
Blasco, J., Ritter, C., Garcia, J., de Teresa, J., Perez-Cacho, J. M., and Ibarra, M. R. (2000). “Structural and magnetic study of Tb1-xCaxMnO3 perovskites,” Phys. Rev. B PRBMDO 62, 56095618 .10.1103/PhysRevB.62.5609CrossRefGoogle Scholar
Bocher, L., Aguirre, H. M., Robert, R., Logvinovich, D., Bakardjieva, S., Hejtmanek, J., and Weidenkaff, A. (2009). “High-temperature stability, structure and thermoelectric properties of CaMn1-xNbxO3 phases,” Acta Mater. ACMAFD 57, 56675680 .10.1016/j.actamat.2009.07.062Google Scholar
Bohigas, X., Tejada, J., del Barco, E., Zhang, X. X., and Sales, M. (1998). “Tunable magnetocaloric effect in ceramic perovskites,” Appl. Phys. Lett. APPLAB 73, 390392 .10.1063/1.121844CrossRefGoogle Scholar
Born, M. and Huang, K. (1954). Dynamical Theory of Crystal Lattices (Oxford Press, Oxford, U.K.).Google Scholar
Božin, E. S., Sartbaeva, A., Zheng, H., Wells, S. A., Mitchell, J. F., Proffen, Th., Thorpe, M. F., and Billinge, S. J. L. (2008). “Structure of CaMnO3 in the range 10 K<T<550 K from neutron time-of-flight total scattering,” J. Phys. Chem. Solids JPCSAW 69, 21462150 .10.1016/j.jpcs.2008.03.029CrossRefGoogle Scholar
Cherry, M., Islam, M. S., and Catlow, C. R. A. (1995). “Oxygen ion migration in perovskite-type oxides,” J. Solid State Chem. JSSCBI 118, 125132 .10.1006/jssc.1995.1320Google Scholar
Chmaissem, O., Dabrowski, B., Kolesnik, S., Mais, J., Brown, D. E., Kruk, R., Prior, P., Pyles, B., and Jorgensen, J. D. (2001). “Relationship between structural parameters and the Néel temperature in Sr1-xCaxMnO3 (0≤x≤1) and Sr1-yBayMnO3 (y≤0.2),” Phys. Rev. B PRBMDO 64, 134412.10.1103/PhysRevB.64.134412CrossRefGoogle Scholar
Dey, S. K. and Zuleeg, R. (1990). “Integrated sol-gel PZT thin-films on Pt, Si, and GaAs for non-volatile memory applications,” Ferroelectrics FEROA8 108, 3746.CrossRefGoogle Scholar
Dick, B. G. Jr. and Overhauser, A. W. (1958). “Theory of the dielectric constants of alkali halide crystals,” Phys. Rev. PRVAAH 112, 90103 .10.1103/PhysRev.112.90Google Scholar
Dominguez, M., Bhagat, S., Lofland, S., Ramachandran, J., Xiong, G., Ju, H., Venkatesan, T., and Greene, R. (1995). “Giant magnetoresistance at microwave frequencies,” Europhys. Lett. EULEEJ 32, 349353 .10.1209/0295-5075/32/4/011Google Scholar
Eerenstein, W., Mathur, N. D., and Scott, J. F. (2006). “Multiferroic and magnetoelectric materials,” Nature (London) NATUAS 442, 759764 .10.1038/nature05023CrossRefGoogle ScholarPubMed
Ewald, R. P. (1921). “Evaluation of optical and electrostatic lattice potentials,” Ann. Phys. ANPYA2 64, 253287 .10.1002/andp.19213690304CrossRefGoogle Scholar
Fawcett, I. D., Sunstrom, J. E. IV, Greenblatt, M., Croft, M., and Ramanujachary, K. V. (1998). “Structure, magnetism, and properties of Ruddlesden–Popper calcium manganates prepared from citrate gels,” Chem. Mater. CMATEX 10, 36433651 .10.1021/cm980380bCrossRefGoogle Scholar
Fazeli, A. R. and Tareen, J. A. K. (1991). “Thermal decomposition of rhombohedral double carbonates of dolomite type,” J. Therm. Anal. JTHEA9 37, 26052611 .10.1007/BF01912805CrossRefGoogle Scholar
Freyria Fava, F., D’Arco, Ph., Orlando, R., and Dovesi, R. (1997). “A quantum mechanical investigation of the electronic and magnetic properties of CaMnO3 perovskite,” J. Phys.: Condens. Matter JCOMEL 9, 489498 .10.1088/0953-8984/9/2/016Google Scholar
Gale, J. D. (1996). “Empirical potential derivation for ionic materials,” Philos. Mag. B PMABDJ 73, 319 .10.1080/13642819608239107Google Scholar
Gale, J. D. and Rohl, A. L. (2003). “The general utility lattice program (GULP),” Mol. Simul. MOSIEA 29, 291341 .10.1080/0892702031000104887CrossRefGoogle Scholar
Gil de Muro, I., Insausti, M., Lezama, L., and Rojo, T. (2005). “Morphological and magnetic study of CaMnO3-x oxides obtained from different routes,” J. Solid State Chem. JSSCBI 178, 928936 .10.1016/j.jssc.2004.06.052CrossRefGoogle Scholar
Goyal, A., Rajeswari, M., Shreekala, R., Lofland, R., Bhagat, S. M., Boettcher, T., Kwon, C., Ramesh, R., and Venkatesan, T. (1997). “Material characteristics of perovskite manganese oxide thin films for bolometric applications,” Appl. Phys. Lett. APPLAB 71, 2535.10.1063/1.120427Google Scholar
Hellemans, A. (1996). “Multilayers and perovskites rewrite rules of resistance,” Science SCIEAS 273, 880881.CrossRefGoogle Scholar
Hinks, D. G., Dabrowski, B., Jorgensen, J. D., Mitchell, A. W., and Richards, D. R. (1988). “Synthesis, structure and superconductivity in the Ba(1-x)K(x)BiO(3-y),” Nature (London) NATUAS 333, 836838 .10.1038/333836a0Google Scholar
Ibarra, M. R., Algarabel, P. A., Marquina, C., Blasco, J., and García, J. (1995). “Large magnetovolume effect in yttrium doped La-Ca-Mn-O perovskite,” Phys. Rev. Lett. PRLTAO 75, 35413544 .10.1103/PhysRevLett.75.3541CrossRefGoogle ScholarPubMed
Isasi, P. H., Lopes, M. E., Nunes, M. R., and Melo Jorge, M. E. (2009). “Low-temperature synthesis of nanocrystalline Ca1-xHoxMnO3-δ (0<x<0.3) powders,” J. Phys. Chem. Solids JPCSAW 70, 405411 .10.1016/j.jpcs.2008.11.010CrossRefGoogle Scholar
Islam, M. S. and Winch, L. J. (1995). “Defect chemistry and oxygen diffusion in the HgBa2Ca2Cu3O8+δ) superconductor: A computer simulation study,” Phys. Rev. B PRBMDO 52, 1051010515 .10.1103/PhysRevB.52.10510Google Scholar
Iwafuchi, K., Watanabe, C., and Otsuka, R. (1983). “Thermal decomposition of ferromanganoan dolomite,” Thermochim. Acta THACAS 66, 105125 .10.1016/0040-6031(93)85024-4CrossRefGoogle Scholar
Jaenicke, S., Chuah, G. K., and Lee, J. Y. (1991). “Catalytic CO oxidation over manganese-containing perovskites,” Environ. Monit. Assess. EMASDH 19, 131138 .10.1007/BF00401304CrossRefGoogle ScholarPubMed
Jin, S. (1996). “Magnetoresistance in perovskite-like La-Ca-Mn-O,” Mater. Trans., JIM MTJIEY 37, 888892.CrossRefGoogle Scholar
Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H. (1994). “Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films,” Science SCIEAS 264, 413415 .10.1126/science.264.5157.413Google Scholar
Kar, M., Borah, S. M., and Ravi, S. (2006). “Study of electrical transport and magnetic properties in CaMn1-xCuxO3,” Mater. Sci. Eng., B MSBTEK 129, 5458 .10.1016/j.mseb.2005.12.034Google Scholar
Lichtenthaler, T. (2005). “Ordering of oxygen vacancies in reduced phases of CaMnO3-x and SrMnO3-x,” Ph.D. thesis, University of OsloGoogle Scholar
MacChesney, J. B., Williams, H. J., Potter, J. F., and Sherwood, R. C. (1967). “Magnetic study of the manganate phases: CaMnO3, Ca4Mn3O10, Ca4Mn2O7, Ca2MnO4,” Phys. Rev. PRVAAH 164, 779785 .10.1103/PhysRev.164.779Google Scholar
Machida, A., Moritomo, Y., Ohoyama, K., and Nakamura, A. (2001). “Neutron investigation of Tb1-xCaxMnO3 (x>=0.5),,” J. Phys. Soc. Jpn. JUPSAU 70, 37393746 .10.1143/JPSJ.70.3739Google Scholar
Mahesh, R., Mahendiran, R., Raychudhuri, A. K., and Rao, C. N. R. (1995). “Giant magnetoresistance in bulk samples of La1-xAxMnO3 (A=Sr or Ca),” J. Solid State Chem. JSSCBI 114, 297299 .10.1006/jssc.1995.1045Google Scholar
Markovich, V., Fita, I., Puzniak, R., Rozenberg, E., Martin, C., Wisniewski, A., Maignan, A., Raveau, B., Yuzhelevskii, Y., and Gorodetsky, G. (2004). “Effect of pressure on magnetic and transport properties of CaMn1-xRuxO3, x=0-0.15: Collapse of ferromagnetic phase in CaMn0.9Ru0.1O3,” Phys. Rev. B PRBMDO 70, 024403.10.1103/PhysRevB.70.024403CrossRefGoogle Scholar
Melo Jorge, M. E., Correia dos Santos, A., and Nunes, M. R. (2001). “Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO3-δ,” Int. J. Inorg. Mater. IJIMCR 3, 915921 .10.1016/S1466-6049(01)00088-5Google Scholar
Melo Jorge, M. E., Nunes, M. R., Silva Maria, R., and Sousa, D. (2005). “Metal–insulator transition induced by Ce doping in CaMnO3,” Chem. Mater. CMATEX 17, 20692075 .10.1021/cm040188bCrossRefGoogle Scholar
Miclau, M., Hebert, S., Retoux, R., and Martin, C. (2005). “Influence of A-site cation size on structural and physical properties in Ca1-xSrxMn0.96Mo0.04O3: A comparison of the x=0:3 and 0.6 compounds,” J. Solid State Chem. JSSCBI 178, 11041111 .10.1016/j.jssc.2005.01.025CrossRefGoogle Scholar
Moritomo, Y. (2008) personal communication.Google Scholar
Moritomo, Y., Machida, A., Nishibori, E., Takata, M., and Sakata, M. (2001). “Enhanced specific heat jump in electron-doped CaMnO3: Spin ordering driven by charge separation,” Phys. Rev. B PRBMDO 64, 214409.10.1103/PhysRevB.64.214409CrossRefGoogle Scholar
Nakade, K., Hirota, K., Kato, M., and Taguchi, H. (2007). “Effect of the Mn3+ ion on electrical and magnetic properties of orthorhombic perovskite-type Ca(Mn1-xTix)O3-δ,” Mater. Res. Bull. MRBUAC 42, 10691076 .10.1016/j.materresbull.2006.09.013CrossRefGoogle Scholar
Obayashi, H., Sakurai, Y., and Gejo, T. (1976). “Perovskite-type oxides as ethanol sensors,” J. Solid State Chem. JSSCBI 17, 299303 .10.1016/0022-4596(76)90135-3CrossRefGoogle Scholar
Parravano, J. (1953). “Catalytic activity of lanthanum and strontium manganite,” J. Am. Chem. Soc. JACSAT 75, 14971498 .10.1021/ja01102a522CrossRefGoogle Scholar
Paszkowicz, W. (2005). “Application of a powder diffractometer equipped with a strip detector to phase analysis and structure refinement,” Nucl. Instrum. Methods Phys. Res. A NIMAER 551, 162177 .10.1016/j.nima.2005.07.068CrossRefGoogle Scholar
Pecharsky, V. K. and Gschneidner, K. A. Jr. (1999). “Magnetocaloric effect and magnetic refrigeration,” J. Magn. Magn. Mater. JMMMDC 200, 4456 .10.1016/S0304-8853(99)00397-2Google Scholar
Peng, Z., Liu, M., and Balko, E. (2001). “A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane,” Sens. Actuators B Chem. 72, 3540 .10.1016/S0925-4005(00)00629-8CrossRefGoogle Scholar
Petrov, A. V., Parker, S. C., and Reller, A. (1995). “Computer simulation of the oxygen mobility in CaMnO3-x,” Phase Transit. 55, 229244 .10.1080/01411599508200436Google Scholar
Poeppelmeier, R., Leonowicz, M. E., Scanlon, J. C., Longo, J. M., and Yelon, W. B. (1982). “Structure determination of CaMnO3 and CaMnO2.5 by X-ray and neutron methods,” J. Solid State Chem. JSSCBI 45, 7179 .10.1016/0022-4596(82)90292-4Google Scholar
Reller, A., Thomas, J. M., Jefferson, D. A., and Uppal, M. K. (1984). “Superstructures formed by the ordering of vacancies in a selective oxidation catalyst: Grossly defective CaMnO3,” Proc. R. Soc. London, Ser. A PRLAAZ 394, 223241 .10.1098/rspa.1984.0077Google Scholar
Rodríguez-Carvajal, J. (1993). “FULLPROF program for Rietveld refinement and pattern matching analysis of powder patterns,” Physica B PHYBE3 192, 5569 .10.1016/0921-4526(93)90108-IGoogle Scholar
Rørmark, L., Wiik, K., Stølen, S., and Grande, T. (2002). “Oxygen stoichiometry and structural properties of La1-xAxMnO3-δ (A=Ca or Sr and 0<x<1),” J. Mater. Chem. JMACEP 12, 10581067 .10.1039/b103510jGoogle Scholar
Sagdeo, P. R., Anwar, S., and Lalla, N. P. (2006). “Powder X-ray diffraction and Rietveld analysis of La1-xCaxMnO3 (0<x<1),” Powder Diffr. PODIE2 21, 4044 .10.1154/1.2104536Google Scholar
Sanders, M. J., Leslie, M., and Catlow, C. R. A. (1984). “Interatomic potentials for SiO2,” J. Chem. Soc. Chem. Commun. 19, 12711273 .10.1039/c39840001271Google Scholar
Santhosh, P. N., Goldberger, J., Woodward, P. M., Vogt, T., Lee, W. P., and Epstein, A. J. (2000). “Phase separation over an extended compositional range: Studies of the Ca1-xBixMnO3, x≤0.25 phase diagram,” Phys. Rev. B PRBMDO 62, 1492814942 .10.1103/PhysRevB.62.14928CrossRefGoogle Scholar
Shim, I.-B., Bae, S.-Y., Oh, Y.-J., and Choi, S.-Y. (1998). “Magnetic inhomogeneity in colossal magnetoresistive La0.67Ca0.33MnO3-d perovskite ceramics,” Solid State Ion. 108, 241247 .10.1016/S0167-2738(98)00045-9CrossRefGoogle Scholar
Slobodin, B. V., Vladimirova, E. V., Petukhov, S. L., Surat, L. L., and Leonidov, I. A. (2005). “Synthesis and structure of (Ca,Sr)-substituted lanthanum manganite,” Neorg. Mater. NMATEI 41, 990997 ; 10.1007/s10789-005-0228-4Google Scholar
Slobodin, B. V., Vladimirova, E. V., Petukhov, S. L., Surat, L. L., and Leonidov, I. A., [Inorg. Mater. INOMAF 41, 869875]. 10.1007/s10789-005-0228-4Google Scholar
Søndenå, R., Stølen, S., Ravindran, P., Grande, T., and Allan, N. L. (2007). “Corner-versus face-sharing octahedra in AMnO3 perovskites (A=Ca, Sr, and Ba),” Phys. Rev. B PRBMDO 75, 184105.10.1103/PhysRevB.75.184105CrossRefGoogle Scholar
Sun, Z., Gallagher, W. J., Duncombe, P. R., Krusin-Elbaum, L., Altman, R. A., Gupta, A., Lu, Y., Gong, G. Q., and Xiao, G. (1996). “Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganate perovskites,” Appl. Phys. Lett. APPLAB 69, 32663268 .10.1063/1.118031CrossRefGoogle Scholar
Taguchi, H. (1996). “Relationship between crystal structure and electrical properties of the Ca-rich region in (La1-xCax)MnO2.97,” J. Solid State Chem. JSSCBI 124, 360365 .10.1006/jssc.1996.0250CrossRefGoogle Scholar
Taguchi, H., Hirota, K., Nishihara, S., Morimoto, S., Takaoka, K., Yoshinaka, M., and Yamaguchi, O. (2005). “Effects of Mn3+ ions on the electrical and magnetic properties of Ca(Mn1-xZrx)O3-δ (0≤x≤0.07),” Physica B PHYBE3 367, 188194 .10.1016/j.physb.2005.06.016Google Scholar
Taguchi, H., Kuniyoshi, Y., and Nagao, M. (1989b). “Synthesis of CaMnO3 from (Ca0.5Mn0.5)CO3,” J. Mater. Sci. Lett. JMSLD5 8, 963964 .10.1007/BF01729961CrossRefGoogle Scholar
Taguchi, H., Nagao, M., Sato, T., and Shimada, M. (1989a). “High-temperature phase transition of CaMnO3-δ,,” J. Solid State Chem. JSSCBI 78, 312315 .10.1016/0022-4596(89)90113-8Google Scholar
Taguchi, H., Sonoda, M., and Nagao, M. (1998). “Relationship between angles for Mn–O–Mn and electrical properties of orthorhombic perovskite-type (Ca1-xSrx)MnO3,” J. Solid State Chem. JSSCBI 137, 8286 .10.1006/jssc.1997.7701CrossRefGoogle Scholar
Takahashi, T. and Iwahara, H. (1971). “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell,” Energy Convers. ENERB5 11, 105111 .10.1016/0013-7480(71)90121-5CrossRefGoogle Scholar
Töpfer, J., Pippardt, U., Voigt, I., and Kriegel, R. (2004). “Structure, nonstoichiometry and magnetic properties of the perovskites Sr1-xCaxMnO3-δ,” Solid State Sci. SSSCFJ 6, 647654 .10.1016/j.solidstatesciences.2004.03.023Google Scholar
Tributsch, H. (2008). “Photovoltaic hydrogen generation,” Int. J. Hydrogen Energy IJHEDX 33, 59115930 .10.1016/j.ijhydene.2008.08.017Google Scholar
Tyagi, S., Lofland, S., Dominguez, M., and Bhagat, S. M. (1996). “Low-field microwave magnetoabsorption in manganites,” Appl. Phys. Lett. APPLAB 68, 28932895 .10.1063/1.116323Google Scholar
Van Aken, B. B., Meetsma, A., Tomioka, Y., Tokura, Y., and Palstra, T. T. M. (2002). “Structural response to O*-O8 and magnetic transitions in orthorhombic perovskites,” Phys. Rev. B PRBMDO 66, 224414.10.1103/PhysRevB.66.224414CrossRefGoogle Scholar
Venkatesan, T., Rajeswari, M., Dong, Z. W., Ogale, S. B., and Ramesh, R. (1998). “Manganite-based devices: Opportunities, bottlenecks and challenges,” Philos. Trans. R. Soc. London, Ser. A PTRMAD 356, 16611680 .10.1098/rsta.1998.0240Google Scholar
Von Helmholt, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K. (1993). “Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films,” Phys. Rev. Lett. PRLTAO 71, 23312333 .10.1103/PhysRevLett.71.2331CrossRefGoogle Scholar
Voorhoeve, R. J. H., Remeika, J. P., Trimble, L. E., Cooper, A. S., DiSalvo, F. J., and Gallagher, P. K. (1975). “Perovskite-like La1-xKxMnO3 and related compounds: Solid state chemistry and the catalysis of the reduction of NO by CO and H2,” J. Solid State Chem. JSSCBI 14, 395406 .10.1016/0022-4596(75)90061-4CrossRefGoogle Scholar
Vrieland, E. G. (1974). “The activity and selectivity of Mn3+ and Mn4+ in lanthanum calcium manganites for the oxidation of ammonia,” J. Catal. JCTLA5 32, 415428 .10.1016/0021-9517(74)90092-XCrossRefGoogle Scholar
Wiebe, C. R., Greedan, J. E., Gardner, J. S., Zeng, Z., and Greenblatt, M. (2001). “Charge and magnetic ordering in the electron-doped magnetoresistive materials CaMnO3-δ, δ=0.06, 0.11,” Phys. Rev. B PRBMDO 64, 064421.10.1103/PhysRevB.64.064421Google Scholar
Wollan, E. O. and Koehler, W. C. (1955). “Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La,xCa]MnO3,” Phys. Rev. PRVAAH 100, 545563 .10.1103/PhysRev.100.545Google Scholar
Wosik, J., Xie, L.-M., Strikovski, M., Przyslupski, P., Kamel, M., Srinivasu, V., and Long, S. A. (2002). “Characterization of ferromagnetic perovskites for magnetically tunable microwave superconducting resonators,” J. Appl. Phys. JAPIAU 91, 53845386 .10.1063/1.1459600CrossRefGoogle Scholar
Yamamoto, O. (2000). “Solid oxide fuel cells: Fundamental aspects and prospects,” Electrochim. Acta ELCAAV 45, 24232435 .10.1016/S0013-4686(00)00330-3CrossRefGoogle Scholar
Zeng, Z., Greenblatt, M., and Croft, M. (1999). “Large magnetoresistance in antiferromagnetic CaMnO3-δ,” Phys. Rev. B PRBMDO 59, 87848788 .10.1103/PhysRevB.59.8784Google Scholar
Zhou, Q. and Kennedy, B. J. (2006). “Thermal expansion and structure of orthorhombic CaMnO3,” J. Phys. Chem. Solids JPCSAW 67, 15951598 .10.1016/j.jpcs.2006.02.011Google Scholar