Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T05:21:33.835Z Has data issue: false hasContentIssue false

Influence of shot peening on surface-layer characteristics of a monocrystalline nickel-based superalloy

Published online by Cambridge University Press:  29 February 2012

Y. H. Chen
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China and School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
C. H. Jiang*
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Z. Wang
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
K. Zhan
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Shot peening was conducted on [100]- and [111]-oriented monocrystalline nickel-based superalloy samples to study the effect of crystal orientation on the distributions of the residual stress and evolution of microstructures in the deformation layers on the sample surfaces as a function of the coverage up to 400%. The XRD results show that the orientation randomizations and the values of compressive residual stress in the [111]-oriented samples are relatively higher than those in the [001]-oriented samples. Moreover, the residual-stress distribution in each sample is anisotropic, and the residual stress is maximum along the 〈110〉 direction. This phenomenon can be explained by the anisotropic properties of a single-crystal alloy and mechanism of the dislocation slip in the plastic deformation layers. Line profile analysis was also used to obtain microstructural information of the samples.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boeckels, H. and Wagner, L. (2005). “Effect of prior cold work on fatigue performance of shot peened Ti-2.5Cu,” Proceedings of the Ninth ICSP, edited by Schulze, V. and Niku-Lari, A. (ICSP, Paris), pp. 332337.Google Scholar
Gao, Y. K., Yao, M., and Li, J. K. (2002). “An analysis of residual stress fields caused by shot peening,” Metall. Mater. Trans. A MMTAEB 33, 17751778.10.1007/s11661-002-0186-2CrossRefGoogle Scholar
Hammersley, G., Hackel, L. A., and Harris, F. (2000). “Surface prestressing to improve fatigue strength of components by laser shot peening,” Opt. Lasers Eng. OLENDN 34, 327337.10.1016/S0143-8166(00)00083-XCrossRefGoogle Scholar
Harada, Y., Fukaura, K., and Haga, S. (2007). “Influence of microshot peening on surface layer characteristics of structural steel,” J. Mater. Process. Technol. JMPTEF 191, 297301.10.1016/j.jmatprotec.2007.03.026CrossRefGoogle Scholar
Harada, Y. and Mori, K. (2005). “Effect of processing temperature on warm shot peening of spring steel,” J. Mater. Process. Technol. JMPTEF 162–163, 498503.10.1016/j.jmatprotec.2005.02.095CrossRefGoogle Scholar
Huang, X., Gibson, T. E., Zhang, M., and Neu, R. W. (2009). “Fretting on the cubic face of a single-crystal Ni-base superalloy at room temperature,” Tribol. Int. TRBIBK 42, 875885.10.1016/j.triboint.2008.12.003CrossRefGoogle Scholar
Kim, S. B., Evans, A., Shackleton, J., Bruno, G., Preuss, M., and Withers, P. J. (2005). “Stress relaxation of shot-peened UDIMET 720Li under solely elevated-temperature exposure and under isothermal fatigue,” Metall. Mater. Trans. A MMTAEB 36, 30413053.10.1007/s11661-005-0076-5CrossRefGoogle Scholar
Langford, J. I. (1978). “A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function,” J. Appl. Crystallogr. JACGAR 11, 1014.10.1107/S0021889878012601CrossRefGoogle Scholar
Leidermark, D., Moverare, J. J., Simonsson, K., Sjöström, S., and Johansson, S. (2009). “Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension-compression asymmetry,” Comput. Mater. Sci. CMMSEM 47, 366372.10.1016/j.commatsci.2009.08.012CrossRefGoogle Scholar
Li, S. X., Ellison, E. G., and Smith, D. J. (1994). “The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloys,” J. Strain Anal. Eng. Des. JSADDZ 29, 147153.10.1243/03093247V292147CrossRefGoogle Scholar
Pollock, T. M. and Tin, S. (2006). “Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties,” J. Propul. Power JPPOEL 22, 361374.10.2514/1.18239CrossRefGoogle Scholar
Prasad, S. C., Rao, I. J., and Rajagopal, K. R. (2005). “A continuum model for the creep of single crystal nickel-base superalloys,” Acta Mater. ACMAFD 53, 669679.10.1016/j.actamat.2004.10.020Google Scholar
Shaw, L., Luo, H., Villegas, J., and Miracle, D. (2003). “Thermal stability of nanostructured Al93Fe3Ti2Cr2 alloys prepared via mechanical alloying,” Acta Mater. ACMAFD 51, 26472663.10.1016/S1359-6454(03)00075-2CrossRefGoogle Scholar
Tian, J. W., Dai, K., Villegas, J. C., Shaw, L., Klarstrom, D. L., and Ortiz, A. L. (2008). “Tensile deformation behavior of a nickel alloy subjected to surface severe plastic deformation,” Mater. Sci. Eng., A MSAPE3 493, 176183.10.1016/j.msea.2007.07.102CrossRefGoogle Scholar
Touratier, F., Andrieu, E., Poquillon, D., and Viguier, B. (2009). “Rafting microstructure during creep of the MC2 nickel-based superalloy at very high temperature,” Mater. Sci. Eng., A MSAPE3 510–511, 244249.10.1016/j.msea.2008.04.100CrossRefGoogle Scholar
Ungár, T. and Borbély, A. (1996). “The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis,” Appl. Phys. Lett. APPLAB 69, 31733175.10.1063/1.117951CrossRefGoogle Scholar
Ungár, T., Gubicza, J., Ribárik, G., and Borbély, A. (2001). “Crystallite size-distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals,” J. Appl. Crystallogr. JACGAR 34, 298310.10.1107/S0021889801003715CrossRefGoogle Scholar
Villegas, J. C., Dai, K., Shaw, L. L., and Liaw, P. K. (2005). “Nanocrystallization of a nickel alloy subjected to surface severe plastic deformation,” Mater. Sci. Eng., A MSAPE3 410–411, 257260.10.1016/j.msea.2005.08.087CrossRefGoogle Scholar
Villegas, J. C. and Shaw, L. L. (2009). “Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation,” Acta Mater. ACMAFD 57, 57825795.10.1016/j.actamat.2009.08.005CrossRefGoogle Scholar
Wang, S., Li, Y., and Wang, R. (1998). “Compressive residual stress introduced by shot peening,” J. Mater. Process. Technol. JMPTEF 73, 6473.10.1016/S0924-0136(97)00213-6CrossRefGoogle Scholar
Webster, G. A. and Ezeilo, A. N. (2001). “Residual stress distributions and their influence on fatigue lifetimes,” Int. J. Fatigue IJFADB 23, 375383.10.1016/S0142-1123(01)00133-5CrossRefGoogle Scholar