Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T19:02:33.437Z Has data issue: false hasContentIssue false

Determination of activation energy of intermixing in textured metal-metal multilayer films via two-dimensional X-ray diffraction

Published online by Cambridge University Press:  20 May 2016

Mark A. Rodriguez
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411
David P. Adams
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411
Ralph G. Tissot
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico87185-1411

Abstract

Activation energies for the intermixing reaction of textured metal-metal multilayer thin films have been determined using X-ray diffraction analysis. Kinetic data were collected utilizing an area detector so as to reduce intensity bias from changes in out-of-plane texture during the intermixing reaction. Activation energies for Al/Pt, Ni/Ti, and Co/Al metal-metal multilayer thin films have been determined as 95.4(2) kJ/mol, 201(13) kJ/mol, and 247(19) kJ/mol, respectively.

Type
X-Ray Diffraction
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. P., Hodges, V. C., Bai, M. M., Jones, E. Jr., Rodriguez, M. A., Buchheit, T., and Moore, J. J. (2008). “Exothermic reactions in Co/Al nanolaminates,” J. Appl. Phys.JAPIAU 104, 043502–043502-7.10.1063/1.2968444CrossRefGoogle Scholar
Adams, D. P., Rodriguez, M. A., Tigges, C. P., and Kotula, P. G. (2006). “Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films,” J. Mater. Res.JMREEE 21, 31683179.10.1557/jmr.2006.0387CrossRefGoogle Scholar
Adams, D. P., Vill, M., Tao, J., Bilello, J. C., and Yalisove, S. M. (1993). “Controlling strength and toughness of multilayer films: A new multiscalar approach,” J. Appl. Phys.JAPIAU 74, 10151021.10.1063/1.354947CrossRefGoogle Scholar
Atkins, P. W. (1986). Physical Chemistry (W. H. Freeman and Company, New York), pp. 687701.Google Scholar
Besnoin, E., Curutti, S., Knio, O. M., and Weihs, T. P. (2002). “Effect of reactant and product melting on self-propagating reactions in multilayer foils,” J. Appl. Phys.JAPIAU 92, 54745481.10.1063/1.1509840CrossRefGoogle Scholar
Bruker-AXS, Inc. (2006). GADDS ver. 4.1.23 (Bruker-AXS, Inc., Madison, WI).Google Scholar
Duckham, A., Spey, S. J., Wang, J., Reiss, M. E., Weihs, T. P., Besnoin, E., and Knio, O. M. (2004). “Reactive nanostructured foil used as a heat source for joining titanium,” J. Appl. Phys.JAPIAU 96, 23362342.10.1063/1.1769097CrossRefGoogle Scholar
Materials Data (2008). JADE, ver. 8.5.2 (Livermore, CA).Google Scholar
Nathani, H., Wang, J., and Weihs, T. P. (2007). “Long-term stability of nanostructured systems with negative heats of mixing,” J. Appl. Phys.JAPIAU 101, 104315–104315-4.10.1063/1.2736937CrossRefGoogle Scholar
Wang, J., Besnoin, E., Duckham, A., Spey, S. J., Reiss, M. E., Knio, O. M., and Weihs, T. P. (2004). “Joining of stainless-steel specimens with nanostructured Al/Ni foils,” J. Appl. Phys.JAPIAU 95, 248256.10.1063/1.1629390CrossRefGoogle Scholar
Wang, J., Besnoin, E., Knio, O. M., and Weihs, T. P. (2004). “Investigating the effect of applied pressure on reactive multilayer foil joining,” Acta Mater.ACMAFD 52, 52655274.10.1016/j.actamat.2004.07.012CrossRefGoogle Scholar