Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T22:34:09.724Z Has data issue: false hasContentIssue false

Crystallographic structure of LiFe1−xMnxPO4 solid solutions studied by neutron powder diffraction

Published online by Cambridge University Press:  11 March 2014

X.Y. Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
B. Zhang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Z.G. Zhang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
L.H. He
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
H. Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
X.J. Huang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
F.W. Wang*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

High-resolution neutron powder diffraction (NPD) data were recorded on a series of cathode material LiFe1−xMnxPO4 (x = 0, 0.2, 0.5, 0.8, and 1.0) solid solutions using the HRPD machine at SINQ/PSI, Switzerland. Ab initio crystal structure solution via program FOX indicates demonstrably that the space group of LiFePO4 is Pnma with Li1+ occupying octahedral (4a) sites and Fe2+ octahedral (4c) sites, respectively, in the olivine structure. Rietveld refinement (program FullProf suite version July-2011), complementary with X-ray diffraction data, shows that Fe2+ may partially (about 2%) distribute over Li1+ sites. NPD data for LiFe1−xMnxPO4 (x = 0, 0.2, 0.5, 0.8, and 1.0) reveal that the Mn2+ replaces Fe2+ at the octahedral (4c) sites. The cell parameters a, b, and c increase linearly and the interatomic distances (in Å) of Li–O(2) and Li–O(1) increase, while the interatomic distances (in Å) of Li–O(3) decrease on the addition of Mn, respectively, partially explaining a higher potential plateau of ~4.1 eV in LiMnPO4 compared to ~3.5 eV in LiFePO4.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amine, K., Yasuda, H., and Yamachi, M. (2000). “Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries,” Electrochem. Solid-State Lett. 3(4), 178179.Google Scholar
Armand, M. and Tarascon, J.-M. (2008). “Building better batteries,” Nature 451, 652657.Google Scholar
Chung, S. Y., Blocking, J. T., and Chiang, Y. M. (2002). “Electronically conductive phosphor-olivines as lithium storage electrodes,” Nature Mater. 1, 123128.Google Scholar
Chung, S. Y., Choi, S. Y., Yamamoto, T., and Ikuhara, Y. (2008). “Atomic-scale visualization of antisite defects in LiFePO4 ,” Phys. Rev. Lett. 100, 125502-1125502-4.Google Scholar
Chung, S. Y., Choi, S. Y., Lee, S., and Ikuhara, Y. (2012). “Distinct configurations of antisite defects in ordered metal phosphates: comparison between LiMnPO4 and LiFePO4 ,” Phys. Rev. Lett. 108, 195501-1195501-5.CrossRefGoogle ScholarPubMed
Dominko, R., Gabersčěk, M., Drofenik, J., Bele, M., and Pejovnik, S. (2001). “A novel coating technology for preparation of cathodes in Li-Ion batteries,” Electrochem. Solid-State Lett. 4(11), A187A190.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fischer, P., Frey, G., Koch, M., Könnecke, M., Pomjakushin, V., Schefer, J., Thut, R., Schlumpf, N., Bürge, R., Greuter, U., Bondt, S., and Berruyer, E. (2000). “High-resolution powder diffractometer HRPT for thermal neutrons at SINQ,” Physica B 276–278, 146147.Google Scholar
Gardiner, G. R. and Islam, M. S. (2010). “Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material,” Chem. Mater. 22, 12421248.Google Scholar
Hoang, K. and Johannes, M. (2011). “Tailoring native defects in LiFePO4: insights from first-principles calculations,” Chem. Mater. 23, 30033013.Google Scholar
Hong, J., Wang, F., Wang, X. L., and Graetz, J. (2011). “LiFe x Mn1−x PO4: a cathode for lithium-ion batteries,” J. Power Sources 196, 36593663.Google Scholar
Huang, H., Yin, S. C., and Nazar, L. F. (2001). “Approaching theoretical capacity of LiFePO4 at room temperature at high rates,” Electrochem. Solid-State Lett. 4, A170A172.CrossRefGoogle Scholar
Islam, M., Driscoll, D., Fisher, C., and Slater, P. (2005). “Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material,” Chem. Mater. 17, 50855092.Google Scholar
Li, G. H., Azuma, H., and Tohda, M. (2002). “LiMnPO4 as the cathode for lithium batteries,” Electrochem. Solid-State Lett. 5(6), A135A137.Google Scholar
Li, H., Wang, Z. X., Chen, L. Q., and Huang, X. J. (2009). “Research on advanced materials for Li-ion batteries,” Adv. Mater. 21, 45934607.CrossRefGoogle Scholar
Molenda, J., Ojczyk, W., and Marzec, J. (2007). “Electrical conductivity and reaction with lithium of LiFe1− y Mn y PO4 olivine-type cathode materials,” J. Power Sources 174, 689694.Google Scholar
Morgan, D., Van der Ven, A., and Ceder, G. (2004). “Li conductivity in Li x MPO4 (M = Fe, Mn, Co, Ni) olivine materials,” Electrochem. Solid-State Lett. 7(2), A30A32.Google Scholar
Nishimura, S., Kobayama, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A. (2008). “Experimental visualization of lithium diffusion in Li x FePO4 ,” Nature Mater. 7, 707.Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B. (1997a). “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochem. Soc. 144, 11881194.Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S., and Goodenough, J. B. (1997b). “Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates,” J. Electrochem. Soc. 144, 16091613.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192, 5569.Google Scholar
Rodríguez-Carvajal, J. (1997). Fullprof, program for rietveld refinement (Laboratories Léon Brillouin (CEA-CNRS), Saclay, France).Google Scholar
Streltsov, V. A., Belokoneva, E. L., Tsirelson, V. G., and Hansen, N. K. (1993). “Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data,” Acta Crystallogr. B 49(2), 147153.Google Scholar
Tarascon, J.-M. and Armand, M. (2001). “Issues and challenges facing rechargeable lithium batteries,” Nature 414, 35367.Google Scholar
Wang, D. Y., Li, H., Shi, S. Q., Huang, X. J., and Chen, L. Q. (2005). “Improving the rate performance of LiFePO4 by Fe-site doping,” Electrochem. Acta 50, 29552958.Google Scholar
Wolfenstine, J. and Allen, J. (2005). “Ni3+/Ni2+ redox potential in LiNiPO4 ,” J. Power Sources 142, 389390.CrossRefGoogle Scholar
Yamada, A., Chung, S., and Hinokuma, K. (2001). “Optimized LiFePO4 for lithium battery cathodes,” J. Electrochem. Soc. 148, A224A229.Google Scholar
Yao, J., Bewlay, S., Konstantionv, K., Drozd, V. A., Liu, R. S., Wang, X. L., Liu, H. K., and Wang, G. X. (2006). “Characterisation of olivine-type LiMn x Fe1− x PO4 cathode materials,” J. Alloys Compd 425, 362366.Google Scholar
Zhang, B., Wang, X. J., Liu, Z. J., and Huang, X. J. (2010). “Enhanced electrochemical performances of carbon coated mesoporous LiFe0.2Mn0.8PO4 ,” J. Electrochem. Soc. 157, A285A288.Google Scholar
Zhang, B., Wang, X. J., Liu, Z. J., and Huang, X. J. (2011). “Electrochemical performances of LiFe1− x Mn x PO4 with high Mn content,” J. Power Sources 196, 69926996.Google Scholar
Zhou, F., Cococcioni, M., Kang, K., and Ceder, G. (2004). “The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni,” Electrochem. Commun. 6, 11441148.Google Scholar
Supplementary material: File

Li Supplementary Material

Li Supplementary Material

Download Li Supplementary Material(File)
File 34.1 KB