Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T22:59:25.076Z Has data issue: true hasContentIssue false

Crystal structure of atorvastatin calcium trihydrate Form I (Lipitor®), (C33H34FN2O5)2Ca(H2O)3

Published online by Cambridge University Press:  06 April 2020

Ryan L. Hodge
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois60540, USA
James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of atorvastatin calcium trihydrate (ACT) has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. ACT crystallizes in space group P1 (#1) with a = 5.44731(4), b = 9.88858(16), c = 29.5925(10) Å, α = 95.859(3), β = 94.211(1), γ = 105.2790(1)°, V = 1521.277(10) Å3, and Z = 1. The most prominent feature of the crystal structure is a hydrophilic layer parallel to the ab-plane. The atorvastatin anions bond to each side of the hydrophilic layer, forming a triple layer. The calcium coordination is distorted octahedral, with the CaO6 coordination sphere being comprised of four carboxylate oxygens, one coordinated water molecule, and a hydroxyl group from one but not the second atorvastatin anion. Several O–H⋯O hydrogen bonds form a two-dimensional network parallel to the ab-plane. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonio, S. G., Benini, F. R., Ferreira, F. F., Rosa, P. C. P., and Pavia-Santos, C. O. (2008). “Synchrotron X-ray powder diffraction data of atorvastatin,” Powd. Diffr. 23, 350355.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Briggs, C. A., Jennings, R. A., Wade, R., Harasawa, K., Ichikawa, S., Minohara, K., and Nakagawa, S. (1999). “Crystalline (R-(R*,R*))-2-(4-fluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid hemi calcium salt (atorvastatin),” US Patent 5,969,156.Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry. International Union of Crystallography Monograph 12 (Oxford University Press, New York).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Byrn, S., Coates, D., Gushurst, K., Krzyaniak, J., Li, Z., Morrison, H., Park, A., and Vlahova, P. (2006). “Crystalline forms of (R-(R*,R*))-2-(4-fluorophenyl)-β,δ-dihydroxy-5-(1-methyl)-3-phenyl-4-((phenylamino)carbonyl)-1H-pyrrole-1-heptanoic acid calcium salt (2:1),” US Patent 7,144,915 B2.Google Scholar
Dassault Systèmes (2018). Materials Studio 2019R1 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powd. Diffr. 34(4), 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powd. Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powd. Diffr. 29, S7S12.CrossRefGoogle Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.CrossRefGoogle Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Informatics 3, 33. doi:10.1186/1758-2946-3-33.Google ScholarPubMed
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.CrossRefGoogle ScholarPubMed
Sonje, V., Kumar, L., Meena, C., Kohli, G., Puri, V., Jain, R., Bansal, A., and Brittain, H. (2010). “Atorvastatin calcium,” Profiles Drug Subst. Excip. Relat. Methodol. 35, 170.CrossRefGoogle ScholarPubMed
Spek, A. L. (2009). “Structure validation in chemical crystallography,” Acta Crystallogr. D 65, 148155.CrossRefGoogle ScholarPubMed
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Vickers, M. (2009). “Atorvastatin,” Private Communication; PDF entry 00-060-1196.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc (2018). Spartan ‘18 Version 1.2.0, Wavefunction Inc.Google Scholar