Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T07:40:09.552Z Has data issue: false hasContentIssue false

Covalent modification of calcium hydroxy and fluoroapatite surface by grafting alkylphosphonate

Published online by Cambridge University Press:  14 November 2013

Hassen Agougui
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, Faculté des Sciences de Monastir, 5019 Monastir, Tunisia
Abdallah Aissa
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, Faculté des Sciences de Monastir, 5019 Monastir, Tunisia
Mongi Debbabi*
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, Faculté des Sciences de Monastir, 5019 Monastir, Tunisia
*
*Corresponding author. Tel. : +216 98 439 692 E-mail: [email protected]

Abstract

Calcium hydroxyl and fluoroapatite (CaHAp and CaFAp) were prepared in the presence of the 2-carboxyletylphosphonic acid (2-CEPA), by hydrothermal method. The incorporation of phosphonic acid within the apatite structure was confirmed by powder XRD, IR and MAS-NMR spectroscopies and SSA. The X-ray powder analysis showed that the cristallinity was not affected by the presence of organic moieties. IR spectroscopy showed new vibration modes related to phosphonate groups. 31P MAS-NMR spectra exhibit new signals, assigned to the presence of organic phosphorus. Specific surface area (SSA) increases with increasing of phosphonate amount, especially for CaHAp. According to these results, a mechanism is proposed for the formation of two types of ionic interaction (-C-O-Ca) and (Ca-O-Porg).

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agougui, H., Aissa, A., Maggi, S. and Debbabi, M. (2010). “Phosphonate-Hydroxyapatite hybrid compounds prepared by hydrothermal method,” Appl. Surf. Sci. 257, 13771382.Google Scholar
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. and Rizzi, R. (2009). “ EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. 42, 11971202.Google Scholar
Anne, P. (1945). “Sur le dosage rapide du carbone organique de sols,” Ann. Agron. 15, 161172.Google Scholar
Bigi, A., Boanini, E., Capuccini, C. and Gazzano, M. (2007). “Strontium-substituted hydroxyapatite nanocrystals,” Inorg. Chim. Acta 360, 10091016.Google Scholar
Fukegawa, D., Hayakawa, S., Yoshida, Y., Suzuki, K., Osaka, A. and Van Meerbeek, B. (2006). “Chemical Interaction of Phosphoric Acid Ester with Hydroxyapatite,” J. Dent. Res. 85, 941944.Google Scholar
Liu, Q., de Wijn, J. R., de Groot, K. and van Blitterswijk, C. A. (1998). “Surface modification of nano-apatite by grafting organic polymer,” Biomaterials 19, 10671072.Google Scholar
Kandori, K., Fujiwara, A., Yasukawa, A. and Ishikawa, T. (1999). “Preparation and characterization of hydrophobic calcium hydroxyapatite particles grafting oleylphosphate groups,” Colloids Surf., A 150, 161170.Google Scholar
Pramanik, P., Mohapatra, N. and Bhargava, S. (2009). “Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications,” Mater. Sci. Eng., C 29, 228236.Google Scholar
Ren, F., Xin, R., Ge, X. and Leng, Y. (2009). “Characterization and structural analysis of zinc-substituted hydroxyapatites,” Acta Biomater. 5, 31413149.Google Scholar
Tanaka, H., Futaoka, M. and Hino, R. (2004). “Surface modification of calcium hydroxyapatite with pyrophosphoric acid,” J. Colloid Interface Sci. 269, 358363.CrossRefGoogle ScholarPubMed
Zahouily, M., Bahlaouan, W., Bahlaouan, B., Rayadh, A. and Sebti, S. (2005). “Catalysis by hydroxyapatite alone and modified by sodium nitrate,” Arkivoc. xiii, 150161.Google Scholar