Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T10:08:33.425Z Has data issue: false hasContentIssue false

Structural characterization of SiGe and SiGe:C heterostructures using a combination of X-ray scattering methods

Published online by Cambridge University Press:  06 March 2012

J. F. Woitok*
Affiliation:
PANalytical B. V., P.O. Box 13, NL-7600 AA Almelo, The Netherlands
*
a)Electronic mail: [email protected]

Abstract

This study is about the structural properties of SiGe and SiGe:C heteroepitaxial layers on Si (001). The structural characterization is based on the application of complementary information content of X-ray scattering techniques like high-resolution X-ray diffraction (XRD), X-ray reflectivity (XRR), and X-ray diffuse scattering (XDS). One main focus of the analysis is to derive a sample model that sufficiently describes all experimental datasets. In addition, the reliability of parameters extracted by just one single method is discussed. It turned out that XRR is more sensitive to the near surface region, indicating the presence of surface roughness and density gradients that do not significantly affect the XRD pattern.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baribeau, J.-M.and Houghton, D. C. (1991). J. Vac. Sci. Technol. B JVTBD9 9, 2054. jvb, JVTBD9 CrossRefGoogle Scholar
Daillant, J. and Sentenac, A. (1999). In X-ray and Neutron Reflectivity: Principles and Applications, edited by J. Daillant and A. Gibaud (Springer-Verlag, Berlin), pp. 121–167.Google Scholar
deBoer, W., Philips Semiconductor, Fishkill (private communication).Google Scholar
Fewster, P. F. (1999). Inst. Phys. Conf. Ser. IPHSAC 164, 197. ipc, IPHSAC Google Scholar
Fewster, P. F. (2003). X-ray Scattering from Semiconductors, 2nd ed. (Imperial College Press, London), pp. 31–103.Google Scholar
Loup, V., Hartmann, J. M., Semeria, M. N., Samoilov, A. V., and Washington, L. (2001). Solid State Technol. July, 91.Google Scholar
Lucas, C. A., Hatton, P. D., Bates, S., Ryan, T. W., Miles, S., and Tanner, B. K. (1988). J. Appl. Phys. JAPIAU 63, 1936. jap, JAPIAU CrossRefGoogle Scholar
Nevot, L.and Croce, P. (1980). Rev. Phys. Appl. RPHAAN 15, 761. rpa, RPHAAN CrossRefGoogle Scholar
PANalytical BV, The Netherlands, X’Pert Epitaxy Vs. 4.0 and X’Pert Reflectivity Vs. 1.0.Google Scholar
Parratt, L. G. (1954). Phys. Rev. PHRVAO 95, 359. phr, PHRVAO CrossRefGoogle Scholar
Paul, D. J. (1999). Thin Solid Films THSFAP 321, 172. tsf, THSFAP CrossRefGoogle Scholar
Ryan, T. and Fewster, P. F., Proceedings EMRS Spring Meeting 2000, Strasbourg.Google Scholar
Sinha, S. K., Sirota, E. B., Garoff, S., and Stanley, H. B. (1988). Phys. Rev. B PRBMDO 38, 2297. prb, PRBMDO CrossRefGoogle Scholar
Wormington, M., Panaccione, C., Matney, K. M., and Bowen, D. K. (1998). Philos. Trans. R. Soc. London, Ser. A PTRMAD 357, 2827. ptr, PTRMAD CrossRefGoogle Scholar