Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T04:09:55.907Z Has data issue: false hasContentIssue false

International Centre for Diffraction Data and American Society for Metals database survey of thermoelectric half-Heusler material systems

Published online by Cambridge University Press:  13 March 2013

Winnie Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. Yang
Affiliation:
Materials Science and Engineering Department, University of Washington, 418 Roberts Hall, Washington 98195-2120
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Phase diagrams and X-ray powder diffraction patterns provide critical information for thermoelectric (TE) research. We have conducted a survey of phase diagrams and powder diffraction patterns of TE systems in the ASM (American Society for Metals) Metal/Alloy database and ICDD (International Centre for Diffraction Data) PDF (Powder Diffraction File), respectively, for their availability and crystal systems. In this report, we focus on TE materials that have the half-Heusler XYZ structure, and related compounds, based on a set of materials selection rules. We found that among 306 potential XYZ compounds that we have surveyed, 234 have powder diffraction patterns in the PDF, but only 28 have phase diagram information, and 67 do not have any crystallographic information. Among the 234 phases with powder patterns, 84 were reported to have cubic F43m half-Heusler type structure, and the remainder have hexagonal, orthorhombic or other structure types. Some XYZ compounds have both cubic and hexagonal phases. This information will provide the basis for future activities for the improvement of the databases. These activities include filling the missing gaps in both phase equilibria database and the PDF, as well as adding TE and pertinent physical properties to the PDF.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asahi, R., Morkkawa, T., Hazama, H., and Matsubara, M. J. (2008). “Materials design and development of functional materials for industry,” Phys. Condens. Matter 20, 64227.CrossRefGoogle ScholarPubMed
Bardin, O. I., Bodak, O. I., Belan, B. D., Kryvulya, L. V., and Protsyk, O. S. (1999). “The La–Ag–Ge system,” Visn. L'viv. Derzh. Univ., Ser. Khim. 38, 5863 (in Ukrainian) + F41.Google Scholar
Bardyn, O., Belan, B. D., Bodak, O. I., Protsyk, O. S., and Shpyrka, Z. M. (2001). “The system La–Ag–Si,” Visn. L'viv. Derzh. Univ., Ser. Khim. 40, 5760 (in Ukrainian).Google Scholar
Belan, B. D., Bodak, O. I., Gladyshevskii, R. E., Soroka, I., Kuzhel, B. S., Protsyk, O. S., and Stets', I. N. (2005). “Interaction of the components in the systems Ce–Ag–Si at 500°C and Eu–Ag–Si at 400°C,” J. Alloys Compd. 396, 212216.CrossRefGoogle Scholar
Belan, B. D., Soroka, I. N., Kryvulya, L. V., Bodak, O. I., and Protsyk, O. S. (1999). “Isothermal section of the phase diagram Eu–Ag–Ge system at 670 K,” Visn. L'viv. Derzh. Univ., Ser. Khim. 38, 5457 (in Ukrainian).Google Scholar
Bodak, O. I., Romaka, V. V., Tkachuk, A. V., Romaka, L. P., and Stadnyk, Y. V. (2005). “Phase equilibria in the Dy–Cu–Sn ternary system,” J. Alloys Compd. 395, 113116.CrossRefGoogle Scholar
Boulet, P., Mazzone, D., Noel, H., Riani, P., Rogl, P., and Ferro, R. (1999). “The system Ce–Ag–Sn: phase equilibria and magnetic properties,” Intermetallics 7, 931935.CrossRefGoogle Scholar
Boulet, P., Mazzone, D., Noel, H., Rogl, P., and Ferro, R. (2001). Phase equilibria and magnetic studies in the ternary system Ce–Au–Sn, J. Alloys Compd. 317/318, 350356.CrossRefGoogle Scholar
Chornobryvets, L., Bodak, O. I., and Berezyuk, D. A. (2001). “The Gd–Cu–Si system,” Visn. L'viv. Derzh. Univ., Ser. Khim. 40, 4447 (in Ukrainian).Google Scholar
Chykhrij, S. I. and Smetana, V. B. (2005). “Phase equilibria and crystal structures of the compounds in the Pr–Ni–Sb system at 870 K,” J. Alloys Compd. 400, 100105.CrossRefGoogle Scholar
Cordruwisch, E., Kaczorowski, D., Saccone, A., Rogl, P., and Ferro, R. (1999). “Constitution, structural chemistry, and magnetism of the ternary system Ce–Ag–Ge,” J. Phase Equilib. 20, 407422.CrossRefGoogle Scholar
Dwight, A. E., Harper, W. C., and Kimball, C. W. (1973). “HoPtSn and other intermetallic compounds with the Fe2P-type structure,” J. Less Common Met. 30, 1.CrossRefGoogle Scholar
Dzioba, M. M., Savysyuk, I. A., Shcherban, O. O., and Gladyshevskii, E. I. (1996). “Pseudobinary CeAg2–CeSi2, PrAg2–PrSi2 and PrAg2–PrGe2 systems,” Visn. L'viv. Derzh. Univ., Ser. Khim. 36, 5965 (in Ukrainian).Google Scholar
Heusler, F. (1903). “Über Magnetische Manganlegierungen”. Verhandlungen der Deutschen,” Verh Deutsch. Phys. Ges. 5, 219.Google Scholar
Jeitschko, W. (1970). “Transition metal stannides with MgAgAs and MnCu2Al type structure,” Metall. Trans. A: Phys. Metall. Mater. Sci. 1, 31593162.CrossRefGoogle Scholar
Jung, D., Koo, H.-J., and Whangbo, M.-H. (2000). “Study of the 18-electron band gap and … band structure calculations,” J. Mol. Struct. 527, 113.CrossRefGoogle Scholar
Kaczarska, K., Pierre, J., Balla, J., Tobola, J., Skolozdra, R. V., and Melnik, G. A. (1998). “Physical properties of the weak itinerant ferromagnet CoVSb and related semi-Heusler compounds,” J. Magn. Magn. Mater. 187, 210220.CrossRefGoogle Scholar
Komarovskaya, L. P., Mkhailiv, L. A., and Skolozdra, R. V. (1989). “The ternary Pr(Lu)–Cu–Sn system,” Russ. Metall. 4, 204208.Google Scholar
Kotur, B. Y. and Gladyshevskij, E. I. (1981). “A note on the crystal structure of two ScCuSAi phases,” J. Less Common Met. 81, 7178.CrossRefGoogle Scholar
Larson, P., Mahanti, S. D., Sportouch, S., and Kanatzidis, M. G. (1999). “Electronic structure of rare-earth nickel pnictides: narrow-gap thermoelectric materials,” Phys. Rev. B 59, 15660.CrossRefGoogle Scholar
Marazza, R., Rossi, D., and Ferro, R. (1980). “CaIn2-type and MgAgAs-Type ReSbPd compounds (RE = rare earth element),” J. Less Common Met. (Switzerland) 75, 2528.CrossRefGoogle Scholar
Martin, J., Tritt, T., and Uher, C. (2010). “High temperature Seebeck coefficient metrology,” J. Appl. Phys. 108, 121101.CrossRefGoogle Scholar
Mazzone, D., Riani, P., Zanicchi, G., Marazza, R., and Ferro, R. (2002). “The isothermal section at 400 °C of the Pr–Ag–Sn ternary system,” Intermetallics, 10, 801809.CrossRefGoogle Scholar
Mozharivskyj, Y. A., Kuz'ma, Y. B., and Sichevich, O. M. (1998). “Y–Ni–Bi and Ho–Ni–Bi Systems,” Neorg. Mater. 34, 851854 (in Russian).Google Scholar
Ogut, S. and Rabe, K. (1995). “Band gap and stability in the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf): A first-principles study,” Phys. Rev. B 51, 10443.CrossRefGoogle ScholarPubMed
Riani, P., Fornasini, M. L., Marazza, R., Mazzone, D., Zanicchi, G., and Ferro, R. (1999). “The isotermal section at 400 °C of the Nd–Cu–Sn ternary system,” Intermetallics 7, 835846.CrossRefGoogle Scholar
Salamakha, P. S. and Zaplatynsky, O. V. (1997). “X-ray investigation of the ternary Nd–Cu–Si and Nd–Cu–Pb systems at 870 K,” J. Alloys Compd. 260, 127130.CrossRefGoogle Scholar
Senkovska, I. V., Mudryk, Y. S., Romaka, L. P., and Bodak, O. I. (2000). “The (Sm,Er)–Cu–Sn ternary systems,” J. Alloys Compd. 312, 124129.CrossRefGoogle Scholar
Skolozdra, R. V. and Okhrimovich, K. O. (1971). “The Nb–Co–Sn and Nb–Ni–Sn Systems,” Russ. Metall. (UK) 6, 135138.Google Scholar
Stadnyk, Y. V. and Romaka, L. P. (2001). “Phase equilibria in the Hf–Ni–Sn ternary system and crystal structure of the Hf2Ni2Sn compound,” J. Alloys Compd. 316, 169171.CrossRefGoogle Scholar
Tobola, J. and Pierre, J. (2000). “Electronic phase diagram of the XTZ (X = Fe, Co, Ni; T = Ti, V, Zr, N, Mn, Z = Sn, Sb) semi-Heusler compounds,” J. Alloys Compd. 296, 243.CrossRefGoogle Scholar
Tobola, J., Pierre, J., Kaprzyk, S., Skolozdra, R. V., and Kouacou, M. A. (1998). “Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration,” J. Phys. Condens. Matter 10, 10131032.CrossRefGoogle Scholar
Tritt, T. M. and Subramanian, M. A. guest editors (2006). Harvesting Energy through Thermoelectrics: Power Generation and Cooling (MRS Bulletin, published by Materials Research Society, Warrendale, PA), pp. 188195.Google Scholar
Uher, C., Yang, J., Hu, S., Morelli, D. T., and Meisner, G. P. (1999). “Transport properties of pure and doped MNiSn (M = Zr, Hf),” Phys. Rev. B 59, 8615.CrossRefGoogle Scholar
Yang, J., Li, H., Wu, T., Zhang, W., Chen, L., and Yang, J. (2008). “Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties,” Adv. Funct. Mater. 18, 28802888.CrossRefGoogle Scholar
Zanicchi, G., Mazzone, D., Fornasini, M. L., Riani, P., Marazza, R., and Ferro, R. (1999). “Yb–Cu–Sn system: the isothermal section at 400 °C,” Intermetallics, 7, 957966.CrossRefGoogle Scholar
Zaplatynsky, O. V. (2000). “Interaction behavior of Nd and Au with elements of group IVA at 600 °C,” Visn. L'viv. Derzh. Univ., Ser. Khim. 39, 8791.Google Scholar
Zaplatynsky, O. V., Prots, Y. M., Salamakha, P. S., Muratova, L. O., and Bodak, O. I. (1996). “The X-ray investigation of the ternary Nd–Ag–Si system,” J. Alloys Compd. 232, L1L4.CrossRefGoogle Scholar
Zhuang, Y., Qin, C., and Li, J. (1991). “The isothermal section (500 °C) of the phase diagram of the ternary system Cu–Sn–Y,” J. Less Common Met. 175, 97101.CrossRefGoogle Scholar