Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T03:07:56.018Z Has data issue: false hasContentIssue false

Evaluation of experimental stress–strain dependence in thermally cycled Al thin film on Si(100)

Published online by Cambridge University Press:  05 March 2012

J. Keckes*
Affiliation:
Erich Schmid Institute for Material Science, Austrian Academy of Sciences, Institute of Metal Physics, University of Leoben and Materials Center, Leoben, Austria
M. Hafok
Affiliation:
Erich Schmid Institute for Material Science, Austrian Academy of Sciences, Institute of Metal Physics, University of Leoben and Materials Center, Leoben, Austria
E. Eiper
Affiliation:
Erich Schmid Institute for Material Science, Austrian Academy of Sciences, Institute of Metal Physics, University of Leoben and Materials Center, Leoben, Austria
A. Hofer
Affiliation:
Erich Schmid Institute for Material Science, Austrian Academy of Sciences, Institute of Metal Physics, University of Leoben and Materials Center, Leoben, Austria
R. Resel
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria
C. Eisenmenger-Sittner
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria
*
a)Author to whom all correspondence should be addressed; electronic mail: [email protected]

Abstract

A new method is introduced for the evaluation of experimental stress–strain dependence in thermally cycled thin films. The method is demonstrated on the analysis of an Al thin film on a Si(100) substrate characterized using in situ high-temperature X-ray diffraction 25–450 °C. Diffraction data are used to evaluate in-plane elastic strain in the film as a function of thermal strain originating from the mismatch of thermal expansion coefficients (TECs) between the film and the substrate. The magnitude of the thermal strain is calculated from experimental TECs of the film and the substrate at every measurement temperature. By relating in-plane stresses to thermal strains, an experimental stress–strain dependence for the Al thin film is obtained. The proposed method allows one to identify elastic behavior and to quantify plastic strain in the film. Finally, advantages of the method are discussed in particular its independence from using TECs reported in the literature.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badawi, F. and Villain, P. (2003). J. Appl. Crystallogr. JACGAR 36, 869.Google Scholar
Dehm, G., Inkson, B. J., and Wagner, T. (2002). Acta Mater. ACMAFD 50, 5021.Google Scholar
Eiper, E., Resel, R., Eisenmenger-Sittner, C., Hafok, M., and Keckes, J. (2004). Powder Diffr. PODIE2 10.1154/1.1649326 19, 74.CrossRefGoogle Scholar
Keckes, J., Gerlach, J. W., Averbeck, R., Riechert, H., Bader, S., Hahn, S., Lugauer, H. J., Lell, A., Härle, V., Wenzel, A., and Rauschenbach, B. (2001a). Appl. Phys. Lett. APPLAB 10.1063/1.1427424 79, 4307.CrossRefGoogle Scholar
Keckes, J., Gerlach, J. W., Averbeck, R., Riechert, H., Bader, S., Hahn, B., Lugauer, H. J., Lell, A., Härle, V., Wenzel, A., and Rauschenbach, B. (2001b). Appl. Phys. Lett. APPLAB 10.1063/1.1427424 79, 4307.Google Scholar
Keckes, J., Six, S., Gerlach, J. W., and Rauschenbach, B. (2004). J. Cryst. Growth JCRGAE 262, 119.Google Scholar
Keckes, J., Wenzel, A., Gerlach, J. W., and Rauschenbach, B. (2003). Nucl. Instrum. Methods Phys. Res. B NIMBEU 211, 519.CrossRefGoogle Scholar
Kraft, O. and Nix, W. D. (1998). J. Appl. Phys. JAPIAU 10.1063/1.367118 83, 3035.CrossRefGoogle Scholar
Kraft, O., Hommel, M., and Arzt, E. (2000). Mater. Sci. Eng., A MSAPE3 10.1016/S0921-5093(00)00876-5 288A, 209.CrossRefGoogle Scholar
Larson, B. C., Yang, W., Ice, G. E., Budai, J. D., and Tischler, J. Z. (2002). Nature (London) NATUAS 10.1038/415887a 415, 887.Google Scholar
Lau, J. H. (1993). Thermal Stress and Strain in Microelectronic Packaging, ITP, New York.Google Scholar
Legros, M., Hemker, K. J., Gouldstone, A., Suresh, S., Keller-Flaig, R. M., and Arzt, E. (2002). Acta Mater. ACMAFD 10.1016/S1359-6454(02)00157-X 50, 3435, and references therein.Google Scholar
Nix, W. D. (1989). Metall. Trans. A MTTABN 20A, 2217.CrossRefGoogle Scholar
Noyan, I. C. (1992). Adv. X-Ray Anal. AXRAAA 35, 461.Google Scholar
Noyan, I. C. and Cohen, J. B. (1987). Residual Stress: Measurement by Diffraction and Interpretation, Springer, Berlin.Google Scholar
Noyan, I. C. and Goldsmith, C. C. (1991). Adv. X-Ray Anal. AXRAAA 34, 587.Google Scholar
Ortner, B. (1986). Adv. X-Ray Anal. AXRAAA 29, 113.Google Scholar
Resel, R., Tamas, E., Sonderegger, B., Hofbauerand, P., and Keckes, J. (2003). J. Appl. Crystallogr. JACGAR 10.1107/S0021889802019568 36, 80.Google Scholar
Van Houtte, P. and De Buyser, L. (1993). Acta Mater. ACMAFD 41, 323.CrossRefGoogle Scholar