Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T20:11:17.808Z Has data issue: false hasContentIssue false

The crystal structure of trandolapril, C24H34N2O5: an example of the utility of raw data deposition in the powder diffraction file

Published online by Cambridge University Press:  14 June 2016

Joel W. Reid*
Affiliation:
Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
James A. Kaduk
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Martin Vickers
Affiliation:
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of trandolapril has been solved by parallel tempering using the FOX software package with laboratory powder diffraction data submitted to and published in the Powder Diffraction File. Rietveld refinement was performed with the software package GSAS yielding orthorhombic lattice parameters of a = 19.7685(4), b = 15.0697(4), and c = 7.6704(2) Å (C24H34N2O5, Z = 4, space group P212121). The Rietveld refinement results were compared with density functional theory (DFT) calculations performed with CRYSTAL14. While the structures are similar, discrepancies are observed in the configuration of the octahydroindole ring between the Rietveld and DFT structures, suggesting the refined and calculated molecules are diastereomers.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B 58, 380388.Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, G. G., Burla, M. C. and Polidori, G. (1995). “On the number of statistically independent observations in a powder diffraction pattern,” J. Appl. Crystallogr. 28, 738744.Google Scholar
Bojarska, J., Maniukuewicz, W., Sieron, L., Kopczacki, P., Walczynski, K. and Remko, M. (2012). “Perindoprilat monohydrate,” Acta Crystallogr. C 68, o443o446.Google Scholar
Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M. and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871313.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘Free Objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Gatti, C., Saunders, V. R. and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Guay, D. P. R. (2003). “Trandolapril: a newer angiotensin-converting enzyme inhibitor,” Clin. Therap. 25, 713775.Google Scholar
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. and Hutchison, G. R. (2012). “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminformatics 4, 17.Google Scholar
Hausin, R. J. and Codding, P. W. (1991). “Molecular and crystal structures of MDL27,467A hydrochloride and quinapril hydrochloride, two ester derivatives of potent angiotensin converting enzyme inhibitors,” J. Med. Chem. 34, 511517.Google Scholar
ICDD (2013). PDF-4+ 2013 (Database), edited by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA).Google Scholar
Jin, Q., Chen, Y., Wang, Y. and Ji, J. (2014). “Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery,” Colloid. Surf. B, Biointerfaces 124, 8086.Google Scholar
Kaduk, J. A. and Reid, J. (2011). “Typical values of Rietveld instrument profile coefficients,” Powder Diff. 26, 8893.Google Scholar
Kostic, N., Dotsikas, Y. and Malenovic, A. (2014). “Critical review of the analytical methods for the determination of zwitterionic antiepileptic drugs – vigabatrin, pregabalin, and gabapentin – in bulk and formulations,” Instrum. Sci. Technol. 42, 486512.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748). Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
Laugier, J. and Bochu, B. (2000). “LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/ Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011). “Open babel: an open chemical toolbox,” J. Chem. Inform., 3, 114. doi: 10.1186/1758-2946-3-33.Google Scholar
Price, S. L. (2008). “Computational prediction of organic crystal structures and polymorphism,” Int. Rev. Phys. Chem. 27, 541568.Google Scholar
Price, S. L. (2009). “Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism,” Acc. Chem. Res. 42, 117126.Google Scholar
Reynolds, N. A., Wagstaff, A. J. and Keam, S. J. (2005). “Trandolapril/verapamil sustained release, a review of its use in the treatment of essential hypertension,” Drugs 65, 18931914.Google Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” IUCR Newslett. 26, 1219.Google Scholar
Sarkar, S. D. and Nahar, L. (2007). Chemistry for Pharmacy Students (Wiley, New York).Google Scholar
Tilborg, A., Norberg, B. and Wouters, J. (2014). “Pharmaceutical salts and cocrystals involving amino acids: a brief structural overview of the state-of-art,” Eur. J. Med. Chem. 74, 411426.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B 70, 10201032.Google Scholar
Vickers (2008). Investigation of Trandolapril. http://img.chem.ucl.ac.uk/www/reports/tran/tran.htm Google Scholar
Von Dreele, R. B. (1997). “Quantitative texture analysis by Rietveld refinement,” J. Appl. Crystallogr. 30, 517525.Google Scholar
Wiseman, L. R. and McTavish, D. (1994). “Trandolapril: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in essential hypertension,” Drugs 48, 7190.Google Scholar
Supplementary material: File

Reid supplementary material

Reid supplementary material 1

Download Reid supplementary material(File)
File 2.1 KB
Supplementary material: File

Reid supplementary material

Reid supplementary material 2

Download Reid supplementary material(File)
File 127.2 KB
Supplementary material: File

Reid supplementary material

Reid supplementary material 3

Download Reid supplementary material(File)
File 241.8 KB
Supplementary material: File

Reid supplementary material

Reid supplementary material 4

Download Reid supplementary material(File)
File 7.5 KB