Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T07:48:10.296Z Has data issue: false hasContentIssue false

Ab initio crystal structure determination of two chain functionalized pyrroles from synchrotron X-ray powder diffraction data

Published online by Cambridge University Press:  17 August 2012

Iván da Silva*
Affiliation:
SpLine Spanish CRG Beamline at the ESRF 6, Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 09, France Instituto de Ciencia de Materiales de Madrid-ICMM/CSIC, Cantoblanco, Madrid 28049, Spain
Sara López-Tosco
Affiliation:
Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
David Tejedor
Affiliation:
Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
Fernando García-Tellado
Affiliation:
Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
Javier González-Platas
Affiliation:
Servicio de Difracción de Rayos X, Departamento de Física Fundamental II, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of two chain functionalized pyrroles, methyl 1-benzyl-5-(1-(4-chlorobenzoyloxy)-2-methoxy-2-oxoethyl)-4-(4-chlorophenyl)-1H-pyrrole-2-carboxylate and methyl 1-benzyl-4-(biphenyl-4-yl)-5-(1-(4-biphenylcarbonyloxy)-2-methoxy-2-oxoethyl)-1H-pyrrole-2-carboxylate, which are both important active candidates as antitumoral agents, have been obtained ab initio from synchrotron X-ray powder diffraction data. Both compounds crystallize in the monoclinic system (space group P21/c), with a = 20.2544(3) Å, b = 6.80442(9) Å, c = 21.1981(3) Å, β = 111.6388(9)° and a = 29.7747(6) Å, b = 6.27495(14) Å, c = 18.8525(3) Å, β = 107.053(2)°, respectively. These structures were determined using a direct space approach, by means of Monte Carlo technique, followed by Rietveld refinement.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, A. D. and Nabbs, B. K. (2001). “Ring-deactivated hydroxymethylpyrroles as inhibitors of α-chymotrypsin,” Bioorg. Med. Chem. 9, 621628.CrossRefGoogle ScholarPubMed
Alcaide, B., Almendros, P., Carrascosa, R., and Redondo, M. C. (2008). “New regiocontrolled synthesis of functionalized pyrroles from 2-azetidinone-tethered allenols,” Chem. Eur. J. 14, 637643.Google Scholar
Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004). “Automatic structure determination from powder data with EXPO2004,” J. Appl. Crystallogr. 37, 10251028.CrossRefGoogle Scholar
Altomare, A., Camalli, M., Cuocci, C., da Silva, I., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2005). “Space group determination: improvements in EXPO2004,” J. Appl. Crystallogr. 38, 760767.CrossRefGoogle Scholar
Baran, P. S., Richter, J. M., and Lin, D. W. (2005). “Direct coupling of pyrroles with carbonyl compounds: short enantioselective synthesis of (S)-Ketorolac,” Angew. Chem. Int. Ed. 44, 609612.CrossRefGoogle ScholarPubMed
Boger, D. L. and Hong, J. (2001). “Asymmetric total synthesis of ent-(−)-Roseophilin: assignment of absolute configuration,” J. Am. Chem. Soc. 123, 85158519.CrossRefGoogle ScholarPubMed
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Brown, G. M., Freeman, G. R., and Walter, R. I. (1977). “Crystal structure of tri(p-biphenylyl)aminium perchlorate,” J. Am. Chem. Soc. 99, 69106915.CrossRefGoogle Scholar
Busetti, V. (1982). “Structure of bis(4-biphenylyl)sulphur diimide,” Acta Crystallogr., Sect. B: Struct. Sci. 38, 665667.CrossRefGoogle Scholar
David, W. I. F., Shankland, K., and Shankland, N. (1998). “Routine determination of molecular crystal structures from powder diffraction data,” Chem. Commun. 8, 931932.CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Dinnebier, R. E., Sieger, P., Nar, H., Shankland, K., and David, W. I. F. (2000). “Structural characterization of three crystalline modifications of telmisartan by single crystal and high-resolution X-ray powder diffraction,” J. Pharm. Sci. 89, 14651479.Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H. (2009). “OLEX2: a complete structure solution, refinement and analysis program,” J. Appl. Crystallogr. 42, 339341.CrossRefGoogle Scholar
Favre-Nicolin, V. and Cerný, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.CrossRefGoogle Scholar
Fürstner, A. (2003). “Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years,” Angew. Chem. Int. Ed. 42, 35823603.CrossRefGoogle ScholarPubMed
Gabriele, B., Salerno, G., Fazio, A., and Veltrid, L. (2006). “Versatile synthesis of pyrrole-2-acetic esters and (pyridine-2-one)-3-acetic amides by palladium-catalyzed, carbon dioxide-promoted oxidative carbonylation of (Z)-(2-En-4-ynyl)amines,” Adv. Synth. Catal. 348, 22122222.CrossRefGoogle Scholar
Harris, K. D. M. and Cheung, E. Y. (2004) “How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data,” Chem. Soc. Rev. 33, 526538.CrossRefGoogle ScholarPubMed
Johnson, J. A., Li, N., and Sames, D. (2002). “Total synthesis of (−)-rhazinilam: asymmetric C − H bond activation via the use of a chiral auxiliary,” J. Am. Chem. Soc. 124, 69006903.CrossRefGoogle Scholar
Jones, R. A. (1992). in Pyrroles, Part II, The Synthesis, Reactivity and Physical Properties of Substituted Pyrroles (Wiley, New York).Google Scholar
Le Quesne, P. W., Dong, Y., and Blythe, T. A. (1999). Alkaloids: Chemical and Biological Perspectives, edited by Pelletier, S. W. (Pergamon, Elmsford, New York).Google Scholar
Lehr, M. (1997). “Structure-activity relationships of (4-Acylpyrrol-2-yl)alkanoic acids as inhibitors of the cytosolic phospholipase A2: variation of the substituents in positions 1, 3, and 5,” J. Med. Chem. 40, 33813392.CrossRefGoogle ScholarPubMed
Leon, L. G., Rios-Luci, C., Tejedor, D., Perez-Roth, E., Montero, J. C., Pandiella, A., Garcia-Tellado, F., and Padron, J. M. (2010). “Mitotic arrest induced by a novel family of DNA topoisomerase II inhibitors,” J. Med. Chem. 53, 38353839.Google Scholar
Martyn, D. C., Vernall, A. J., Clark, B. M., and Abell, A. D. (2003). “Ring-deactivated hydroxyalkylpyrrole-based inhibitors of α-chymotrypsin: synthesis and mechanism of action,” Org. Biomol. Chem. 1, 21032110.CrossRefGoogle ScholarPubMed
Mehta, G. and Singh, V. (2002). “Hybrid systems through natural product leads: an approach towards new molecular entities,” Chem. Soc. Rev. 31, 324334.Google Scholar
Padrón, J. M., Tejedor, D., Santos-Expósito, A., García-Tellado, F., Martín, V. S., and Villar, J. (2005). “Antiproliferative activity in HL60 cells by tetrasubstituted pyrroles: a structure–activity relationship study,” Bioorg. Med. Chem. Lett. 15, 2487.CrossRefGoogle ScholarPubMed
Pfefferkorn, J. A., Bowles, D. M., Kissel, W., Boyles, D. C., Choi, C., Larsen, S. D., Song, Y., Sun, K. L., Miller, S. R., and Trivedi, B. K. (2007). “Development of a practical synthesis of novel, pyrrole-based HMG-CoA reductase inhibitors,” Tetrahedron 63, 81248134.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” Comm. Powder Diffr. (IUCr) Newslett. 26, 1219.Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a Windows tool for powder diffraction patterns analysis,” Mater. Sci. Forum 378–381, 118126.CrossRefGoogle Scholar
Tejedor, D., López-Tosco, S., González-Platas, J., and García-Tellado, F. (2009). “From conjugated tertiary skipped diynes to chain-functionalized tetrasubstituted pyrroles,” Chem. Eur. J. 15, 838842.CrossRefGoogle ScholarPubMed
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20, 7983.CrossRefGoogle Scholar
Tietze, L. F., Bell, H. P., and Chandrasekhar, S. (2003). “Natural product hybrids as new leads for drug discovery,” Angew. Chem. Int. Ed. 42, 39964028.CrossRefGoogle ScholarPubMed
Walsh, C. T., Garneau-Tsodikova, S., and Howard-Jones, A. R. (2006). “Biological formation of pyrroles: Nature's logic and enzymatic machinery,” Nat. Prod. Rep. 23, 517531.CrossRefGoogle ScholarPubMed