Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T00:28:54.691Z Has data issue: false hasContentIssue false

Genetic fingerprinting of Ziziphus jujuba by using SCoT and REMAP molecular markers

Published online by Cambridge University Press:  11 September 2023

Zohreh Mohajer Kaboli
Affiliation:
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
Masoud Sheidai
Affiliation:
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
Fahimeh Koohdar*
Affiliation:
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
*
Corresponding author: Fahimeh Koohdar; Email: [email protected]

Abstract

Jujube is both consumed as a food source and medicinal plant in local markets. It is expected that different geographical populations of Ziziphus jujuba, differ in their genetic content as they grow in different ecological conditions. It is important to have detailed information on population genetic structure and the available genetic variability to make a proper germplasm collection of jujube. We have no data on jujube populations of Iran based on SCoT and REMAP molecular markers, and therefore we planned a population genetic study of these trees in 10 geographical areas. We used SCoT and REMAP molecular markers for our genetic investigation. We found the loci with a high value of Gst (1.00) in SCoT and REMAP markers that can be used in fingerprinting of jujube.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asatryan, A and Tel-Zur, N (2013) Pollen tube growth and self-incompatibility in three Ziziphus species (Rhamnaceae). Flora 208, 390399.10.1016/j.flora.2013.04.010CrossRefGoogle Scholar
Collard, BC and Mackill, DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter 27, 8693.10.1007/s11105-008-0060-5CrossRefGoogle Scholar
Farahani, F, Sedighzadegan, A, Sheidai, M and Koohdar, F (2019) Population genetic studies in Ziziphus jujuba Mill.: Multiple molecular markers (ISSR, SRAP, ITS, Cp-DNA). Caryologia 72, 5160.Google Scholar
Freeland, JR, Kirk, H and Petersen, S (2011) Molecular genetics in ecology. Molecular Ecology Resources 2, 134.Google Scholar
Gupta, M, Mazumder, UK, Vamsi, ML, Sivakumar, T and Kandar, CC (2004) Anti-steroidogenic activity of the two Indian medicinal plants in mice. Journal of Ethnopharmacology 90, 2125.10.1016/j.jep.2003.09.002CrossRefGoogle ScholarPubMed
Hammer, Ø, Harper, DAT and Ryan, PD (2012) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.Google Scholar
Hill, MO and Gauch, HG (1980) Detrended correspondence analysis: An improved ordination technique. Vegetatio 42, 4752.10.1007/BF00048870CrossRefGoogle Scholar
Huang, X, Kojima-Yuasa, A, Norikura, T, Kennedy, Do, Hasuma, T and Matsui-Yuasa, I (2007) Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells. The American Journal of Chinese Medicine 3, 517532.10.1142/S0192415X0700503XCrossRefGoogle Scholar
Huang, J, Yang, X, Zhang, C, Yin, X, Liu, S and Li, X (2015) Development of chloroplast microsatellite markers and analysis of chloroplast diversity in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube (Ziziphus acidojujuba Mill.). PLoS One 10, e0134519.CrossRefGoogle ScholarPubMed
Jiang, JG, Huang, XJ, Chen, J and Lin, QS (2007) Comparison of the sedative and hypnotic effects of flavonoids, saponins, and polysaccharides extracted from Semen Ziziphus jujuba. Natural Product Research 21, 310320.10.1080/14786410701192827CrossRefGoogle Scholar
Križman, M, Jakše, J, Baričevič, D, Javornik, B and Prošek, M (2006) Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta agriculturae Slovenica 87, 427433.Google Scholar
Lee, SM, Park, JG and Lee, YH (2004) Anti-complementary activity of triterpenoides from fruits of Zizyphus jujube. Biological and Pharmaceutical Bulletin 27, 18831886.10.1248/bpb.27.1883CrossRefGoogle Scholar
Liu, P, Peng, JY, Peng, SQ, Zhou, JY and Dai, L (2005) Study on systematic relationships of Ziziphus jujuba using RAPD technique. Scientia Sinica 41, 182185.Google Scholar
Mantel, N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27(2), 209220.Google Scholar
Nabavi, ST, Farahani, F, Sheidai, M, Poursakhi, K and Naeini, MR (2019) Population genetic study of Ziziphus jujuba Mill.: insight in to wild and cultivated plants genetic structure. Caryologia 72, 8592.Google Scholar
Peakall, R and Smouse, PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Resources 6, 288295.Google Scholar
Peng, JY, Shu, HR, Sun, ZX and Peng, SQ (2000) RAPD analysis of germplasm resources on Chinese date. Acta Chimica Sinica 27, 171176.Google Scholar
Podani, J (2000) Introduction to the Exploration of Multivariate Data. Leiden: Backhuyes, 407 pp.Google Scholar
Reche, J, García-Martínez, S, Carbonell, P, Almansa, MS, Hernández, F, Legua, P and Amorós, A (2019) Relationships between physico-chemical and functional parameters and genetic analysis with ISSR markers in Spanish jujubes (Ziziphus jujuba Mill.) cultivars. Scientia Horticulturae 253, 390398.10.1016/j.scienta.2019.04.068CrossRefGoogle Scholar
Saboori, S, Noormohammadi, Z, Sheidai, M and Marashi, SM (2019) SCoT molecular markers and genetic fingerprinting of date palm (Phoenix dactylifera L.) cultivars. Genetic Resources and Crop Evolution 67, 7382.10.1007/s10722-019-00854-xCrossRefGoogle Scholar
Sheidai, M, Taban, F, Talebi, Sm and Noormohammadi, Z (2016) Genetic and morphological diversity in Stachys lavandulifolia (Lamiaceae) populations. Biologija 62, 924.10.6001/biologija.v62i1.3286CrossRefGoogle Scholar
Singh, A, Sharma, P and Singh, R (2007) Assessment of genetic diversity in Ziziphus mauritiana using inter-simple sequence repeat markers. Journal of Plant Biochemistry and Biotechnology 16, 3540.CrossRefGoogle Scholar
Singh, SK, Chhajer, S, Pathak, R, Bhatt, RK and Kalia, RK (2017) Genetic diversity of Indian jujube cultivars using SCoT, ISSR, and rDNA markers. Tree Genetics & Genomes 13, 12.CrossRefGoogle Scholar
Vahedi, F, Fathi Najafi, M and Bozari, K (2008) Evaluation of inhibitory effect and apoptosis induction of Ziziphus jujuba on tumor cell lines, an in vitro preliminary study. Cytotechnology 56, 105111.10.1007/s10616-008-9131-6CrossRefGoogle Scholar
Wang, YK, Tian, JB, Wang, YQ, Sui, Cl, Li, Dk and Huang, CL (2007) AFLP analysis of jujuba cultivars and strain. Journal of Fruit Science 242, 146150.Google Scholar
Wang, S, Liu, Y, Ma, L, Liu, H, Tang, Y and Wu, L (2014) Isolation and characterization of microsatellite markers and analysis of genetic diversity in Chinese jujuba (Ziziphus jujuba Mill.). Plos One 9, e99842.10.1371/journal.pone.0099842CrossRefGoogle ScholarPubMed
Weising, K, Nybom, H, Wolff, K and Kahl, G (2005) DNA Fingerprinting in Plants, 2nd Edn. Boca Rayton, USA: CRC Press.Google Scholar
Zhang, C, Huang, J, Yin, X, Lian, C and Li, X (2014) Genetic diversity and population structure of sour jujube, Ziziphus acidojujuba. Tree Genetics & Genomes 11, 809.10.1007/s11295-014-0809-yCrossRefGoogle Scholar
Supplementary material: File

Mohajer Kaboli et al. supplementary material
Download undefined(File)
File 1.6 MB